Workplace Health and Safety Information Home Page

Chapter 29 - Ergonomics


Wolfgang Laurig and Joachim Vedder

In the 3rd edition of the ILO’s Encyclopaedia, published in 1983, ergonomics was summarized in one article that was only about four pages long. Since the publication of the 3rd edition, there has been a major change in emphasis and in understanding of interrelationships in safety and health: the world is no longer easily classifiable into medicine, safety and hazard prevention. In the last decade almost every branch in the production and service industries has expended great effort in improving productivity and quality. This restructuring process has yielded practical experience which clearly shows that productivity and quality are directly related to the design of working conditions. One direct economical measure of productivity—the costs of absenteeism through illness—is affected by working conditions. Therefore it should be possible to increase productivity and quality and to avoid absenteeism by paying more attention to the design of working conditions.

In sum, the simple hypothesis of modern ergonomics can be stated thus: Pain and exhaustion cause health hazards, wasted productivity and reduced quality, which are measures of the costs and benefits of human work.

This simple hypothesis can be contrasted to occupational medicine which generally restricts itself to establishing the aetiology of occupational diseases. Occupational medicine’s goal is to establish conditions under which the probability of developing such diseases is minimized. Using ergonomic principles these conditions can be most easily formulated in the form of demands and load limitations. Occupational medicine can be summed up as establishing “limitations through medico-scientific studies”. Traditional ergonomics regards its role as one of formulating the methods where, using design and work organization, the limitations established through occupational medicine can be put into practice. Traditional ergonomics could then be described as developing “corrections through scientific studies”, where “corrections” are understood to be all work design recommendations that call for attention to be paid to load limits only in order to prevent health hazards. It is a characteristic of such corrective recommendations that practitioners are finally left alone with the problem of applying them—there is no multidisciplinary team effort.

The original aim of inventing ergonomics in 1857 stands in contrast to this kind of “ergonomics by correction”:

... a scientific approach enabling us to reap, for the benefit of ourselves and others, the best fruits of life’s labour for the minimum effort and maximum satisfaction (Jastrzebowski 1857).

The root of the term “ergonomics” stems from the Greek “nomos” meaning rule, and “ergo” meaning work. One could propose that ergonomics should develop “rules” for a more forward-looking, prospective concept of design. In contrast to “corrective ergonomics”, the idea of prospective ergonomics is based on applying ergonomic recommendations which simultaneously take into consideration profitability margins (Laurig 1992).

The basic rules for the development of this approach can be deduced from practical experience and reinforced by the results of occupational hygiene and ergonomics research. In other words, prospective ergonomics means searching for alternatives in work design which prevent fatigue and exhaustion on the part of the working subject in order to promote human productivity (“... for the benefit of ourselves and others”). This comprehensive approach of prospective ergonomics includes workplace and equipment design as well as the design of working conditions determined by an increasing amount of information processing and a changing work organization. Prospective ergonomics is, therefore, an interdisciplinary approach of researchers and practitioners from a wide range of fields united by the same goal, and one part of a general basis for a modern understanding of occupational safety and health (UNESCO 1992).

Based on this understanding, the Ergonomics chapter in the 4th edition of the ILO Encyclopaedia covers the different clusters of knowledge and experiences oriented toward worker characteristics and capabilities, and aimed at an optimum use of the resource “human work” by making work more “ergonomic”, that is, more humane.

The choice of topics and the structure of articles in this chapter follows the structure of typical questions in the field as practised in industry. Beginning with the goals, principles and methods of ergonomics, the articles which follow cover fundamental principles from basic sciences, such as physiology and psychology. Based on this foundation, the next articles introduce major aspects of an ergonomic design of working conditions ranging from work organization to product design. “Designing for everyone” puts special emphasis on an ergonomic approach that is based on the characteristics and capabilities of the worker, a concept often overlooked in practice. The importance and diversity of ergonomics is shown in two examples at the end of the chapter and can also be found in the fact that many other chapters in this edition of the ILO Encyclopaedia are directly related to ergonomics, such as Heat and Cold, Noise, Vibration, Visual Display Units , and virtually all chapters in the sections Accident and Safety Management and Management and Policy.


William T. Singleton

Definition and Scope

Ergonomics means literally the study or measurement of work. In this context, the term work signifies purposeful human function; it extends beyond the more restricted concept of work as labour for monetary gain to incorporate all activities whereby a rational human operator systematically pursues an objective. Thus it includes sports and other leisure activities, domestic work such as child care and home maintenance, education and training, health and social service, and either controlling engineered systems or adapting to them, for example, as a passenger in a vehicle.

The human operator, the focus of study, may be a skilled professional operating a complex machine in an artificial environment, a customer who has casually purchased a new piece of equipment for personal use, a child sitting in a classroom or a disabled person in a wheelchair. The human being is highly adaptable but not infinitely so. There are ranges of optimum conditions for any activity. One of the tasks of ergonomics is to define what these ranges are and to explore the undesirable effects which occur if the limits are transgressed—for example if a person is expected to work in conditions of excessive heat, noise or vibration, or if the physical or mental workload is too high or too low.

Ergonomics examines not only the passive ambient situation but also the unique advantages of the human operator and the contributions that can be made if a work situation is designed to permit and encourage the person to make the best use of his or her abilities. Human abilities may be characterized not only with reference to the generic human operator but also with respect to those more particular abilities that are called upon in specific situations where high performance is essential. For example, an automobile manufacturer will consider the range of physical size and strength of the population of drivers who are expected to use a particular model to ensure that the seats are comfortable, that the controls are readily identifiable and within reach, that there is clear visibility to the front and the rear, and that the internal instruments are easy to read. Ease of entry and egress will also be taken into account. By contrast, the designer of a racing car will assume that the driver is athletic so that ease of getting in and out, for example, is not important and, in fact, design features as a whole as they relate to the driver may well be tailored to the dimensions and preferences of a particular driver to ensure that he or she can exercise his or her full potential and skill as a driver.

In all situations, activities and tasks the focus is the person or persons involved. It is assumed that the structure, the engineering and any other technology is there to serve the operator, not the other way round.

History and Status

About a century ago it was recognized that working hours and conditions in some mines and factories were not tolerable in terms of safety and health, and the need was evident to pass laws to set permissible limits in these respects. The determination and statement of those limits can be regarded as the beginning of ergonomics. They were, incidentally, the beginning of all the activities which now find expression through the work of the International Labour Organization (ILO).

Research, development and application proceeded slowly until the Second World War. This triggered greatly accelerated development of machines and instrumentation such as vehicles, aircraft, tanks, guns and vastly improved sensing and navigation devices. As technology advanced, greater flexibility was available to allow adaptation to the operator, an adaptation that became the more necessary because human performance was limiting the performance of the system. If a powered vehicle can travel at a speed of only a few kilometres per hour there is no need to worry about the performance of the driver, but when the vehicle’s maximum speed is increased by a factor of ten or a hundred, then the driver has to react more quickly and there is no time to correct mistakes to avert disaster. Similarly, as technology is improved there is less need to worry about mechanical or electrical failure (for instance) and attention is freed to think about the needs of the driver.

Thus ergonomics, in the sense of adapting engineering technology to the needs of the operator, becomes simultaneously both more necessary and more feasible as engineering advances.

The term ergonomics came into use about 1950 when the priorities of developing industry were taking over from the priorities of the military. The development of research and application for the following thirty years is described in detail in Singleton (1982). The United Nations agencies, particularly the ILO and the World Health Organization (WHO), became active in this field in the 1960s.

In immediate postwar industry the overriding objective, shared by ergonomics, was greater productivity. This was a feasible objective for ergonomics because so much industrial productivity was determined directly by the physical effort of the workers involved—speed of assembly and rate of lifting and movement determined the extent of output. Gradually, mechanical power replaced human muscle power. More power, however, leads to more accidents on the simple principle that an accident is the consequence of power in the wrong place at the wrong time. When things are happening faster, the potential for accidents is further increased. Thus the concern of industry and the aim of ergonomics gradually shifted from productivity to safety. This occurred in the 1960s and early 1970s. About and after this time, much of manufacturing industry shifted from batch production to flow and process production. The role of the operator shifted correspondingly from direct participation to monitoring and inspection. This resulted in a lower frequency of accidents because the operator was more remote from the scene of action but sometimes in a greater severity of accidents because of the speed and power inherent in the process.

When output is determined by the speed at which machines function then productivity becomes a matter of keeping the system running: in other words, reliability is the objective. Thus the operator becomes a monitor, a trouble-shooter and a maintainer rather than a direct manipulator.

This historical sketch of the postwar changes in manufacturing industry might suggest that the ergonomist has regularly dropped one set of problems and taken up another set but this is not the case for several reasons. As explained earlier, the concerns of ergonomics are much wider than those of manufacturing industry. In addition to production ergonomics, there is product or design ergonomics, that is, adapting the machine or product to the user. In the car industry, for example, ergonomics is important not only to component manufacturing and the production lines but also to the eventual driver, passenger and maintainer. It is now routine in the marketing of cars and in their critical appraisal by others to review the quality of the ergonomics, considering ride, seat comfort, handling, noise and vibration levels, ease of use of controls, visibility inside and outside, and so on.

It was suggested above that human performance is usually optimized within a tolerance range of a relevant variable. Much of the early ergonomics attempted to reduce both muscle power output and the extent and variety of movement by way of ensuring that such tolerances were not exceeded. The greatest change in the work situation, the advent of computers, has created the opposite problem. Unless it is well designed ergonomically, a computer workspace can induce too fixed a posture, too little bodily movement and too much repetition of particular combinations of joint movements.

This brief historical review is intended to indicate that, although there has been continuous development of ergonomics, it has taken the form of adding more and more problems rather than changing the problems. However, the corpus of knowledge grows and becomes more reliable and valid, energy expenditure norms are not dependent on how or why the energy is expended, postural issues are the same in aircraft seats and in front of computer screens, much human activity now involves using videoscreens and there are well-established principles based on a mix of laboratory evidence and field studies.

Ergonomics and Related Disciplines

The development of a science-based application which is intermediate between the well-established technologies of engineering and medicine inevitably overlaps into many related disciplines. In terms of its scientific basis, much of ergonomic knowledge derives from the human sciences: anatomy, physiology and psychology. The physical sciences also make a contribution, for example, to solving problems of lighting, heating, noise and vibration.

Most of the European pioneers in ergonomics were workers among the human sciences and it is for this reason that ergonomics is well-balanced between physiology and psychology. A physiological orientation is required as a background to problems such as energy expenditure, posture and application of forces, including lifting. A psychological orientation is required to study problems such as information presentation and job satisfaction. There are of course many problems which require a mixed human sciences approach such as stress, fatigue and shift work.

Most of the American pioneers in this field were involved in either experimental psychology or engineering and it is for this reason that their typical occupational titles—human engineering and human factors—reflect a difference in emphasis (but not in core interests) from European ergonomics. This also explains why occupational hygiene, from its close relationship to medicine, particularly occupational medicine, is regarded in the United States as quite different from human factors or ergonomics. The difference in other parts of the world is less marked. Ergonomics concentrates on the human operator in action, occupational hygiene concentrates on the hazards to the human operator present in the ambient environment. Thus the central interest of the occupational hygienist is toxic hazards, which are outside the scope of the ergonomist. The occupational hygienist is concerned about effects on health, either long-term or short-term; the ergonomist is, of course, concerned about health but he or she is also concerned about other consequences, such as productivity, work design and workspace design. Safety and health are the generic issues which run through ergonomics, occupational hygiene, occupational health and occupational medicine. It is, therefore, not surprising to find that in a large institution of a research, design or production kind, these subjects are often grouped together. This makes possible an approach based on a team of experts in these separate subjects, each making a specialist contribution to the general problem of health, not only of the workers in the institution but also of those affected by its activities and products. By contrast, in institutions concerned with design or provision of services, the ergonomist might be closer to the engineers and other technologists.

It will be clear from this discussion that because ergonomics is interdisciplinary and still quite new there is an important problem of how it should best be fitted into an existing organization. It overlaps onto so many other fields because it is concerned with people and people are the basic and all-pervading resource of every organization. There are many ways in which it can be fitted in, depending on the history and objectives of the particular organization. The main criteria are that ergonomics objectives are understood and appreciated and that mechanisms for implementation of recommendations are built into the organization.

Aims of Ergonomics

It will be clear already that the benefits of ergonomics can appear in many different forms, in productivity and quality, in safety and health, in reliability, in job satisfaction and in personal development.

The reason for this breadth of scope is that its basic aim is efficiency in purposeful activity—efficiency in the widest sense of achieving the desired result without wasteful input, without error and without damage to the person involved or to others. It is not efficient to expend unnecessary energy or time because insufficient thought has been given to the design of the work, the workspace, the working environment and the working conditions. It is not efficient to achieve the desired result in spite of the situation design rather than with support from it.

The aim of ergonomics is to ensure that the working situation is in harmony with the activities of the worker. This aim is self-evidently valid but attaining it is far from easy for a variety of reasons. The human operator is flexible and adaptable and there is continuous learning, but there are quite large individual differences. Some differences, such as physical size and strength, are obvious, but others, such as cultural differences and differences in style and in level of skill, are less easy to identify.

In view of these complexities it might seem that the solution is to provide a flexible situation where the human operator can optimize a specifically appropriate way of doing things. Unfortunately such an approach is sometimes impracticable because the more efficient way is often not obvious, with the result that a worker can go on doing something the wrong way or in the wrong conditions for years.

Thus it is necessary to adopt a systematic approach: to start from a sound theory, to set measurable objectives and to check success against these objectives. The various possible objectives are considered below.

Safety and health

There can be no disagreement about the desirability of safety and health objectives. The difficulty stems from the fact that neither is directly measurable: their achievement is assessed by their absence rather than their presence. The data in question always pertain to departures from safety and health.

In the case of health, much of the evidence is long-term as it is based on populations rather than individuals. It is, therefore, necessary to maintain careful records over long periods and to adopt an epidemiological approach through which risk factors can be identified and measured. For example, what should be the maximum hours per day or per year required of a worker at a computer workstation? It depends on the design of the workstation, the kind of work and the kind of person (age, vision, abilities and so on). The effects on health can be diverse, from wrist problems to mental apathy, so it is necessary to carry out comprehensive studies covering quite large populations while simultaneously keeping track of differences within the populations.

Safety is more directly measurable in a negative sense in terms of kinds and frequencies of accidents and damage. There are problems in defining different kinds of accidents and identifying the often multiple causal factors and there is often a distant relationship between the kind of accident and the degree of harm, from none to fatality.

Nevertheless, an enormous body of evidence concerning safety and health has been accumulated over the past fifty years and consistencies have been discovered which can be related back to theory, to laws and standards and to principles operative in particular kinds of situations.

Productivity and efficiency

Productivity is usually defined in terms of output per unit of time, whereas efficiency incorporates other variables, particularly the ratio of output to input. Efficiency incorporates the cost of what is done in relation to achievement, and in human terms this requires the consideration of the penalties to the human operator.

In industrial situations, productivity is relatively easy to measure: the amount produced can be counted and the time taken to produce it is simple to record. Productivity data are often used in before/after comparisons of working methods, situations or conditions. It involves assumptions about equivalence of effort and other costs because it is based on the principle that the human operator will perform as well as is feasible in the circumstances. If the productivity is higher then the circumstances must be better. There is much to recommend this simple approach provided that it is used with due regard to the many possible complicating factors which can disguise what is really happening. The best safeguard is to try to make sure that nothing has changed between the before and after situations except the aspects being studied.

Efficiency is a more comprehensive but always a more difficult measure. It usually has to be specifically defined for a particular situation and in assessing the results of any studies the definition should be checked for its relevance and validity in terms of the conclusions being drawn. For example, is bicycling more efficient than walking? Bicycling is much more productive in terms of the distance that can be covered on a road in a given time, and it is more efficient in terms of energy expenditure per unit of distance or, for indoor exercise, because the apparatus required is cheaper and simpler. On the other hand, the purpose of the exercise might be energy expenditure for health reasons or to climb a mountain over difficult terrain; in these circumstances walking will be more efficient. Thus, an efficiency measure has meaning only in a well-defined context.

Reliability and quality

As explained above, reliability rather than productivity becomes the key measure in high technology systems (for instance, transport aircraft, oil refining and power generation). The controllers of such systems monitor performance and make their contribution to productivity and to safety by making tuning adjustments to ensure that the automatic machines stay on line and function within limits. All these systems are in their safest states either when they are quiescent or when they are functioning steadily within the designed performance envelope. They become more dangerous when moving or being moved between equilibrium states, for example, when an aircraft is taking off or a process system is being shut down. High reliability is the key characteristic not only for safety reasons but also because unplanned shut-down or stoppage is extremely expensive. Reliability is straightforward to measure after performance but is extremely difficult to predict except by reference to the past performance of similar systems. When or if something goes wrong human error is invariably a contributing cause, but it is not necessarily an error on the part of the controller: human errors can originate at the design stage and during setting up and maintenance. It is now accepted that such complex high-technology systems require a considerable and continuous ergonomics input from design to the assessment of any failures that occur.

Quality is related to reliability but is very difficult if not impossible to measure. Traditionally, in batch and flow production systems, quality has been checked by inspection after output, but the current established principle is to combine production and quality maintenance. Thus each operator has parallel responsibility as an inspector. This usually proves to be more effective, but it may mean abandoning work incentives based simply on rate of production. In ergonomic terms it makes sense to treat the operator as a responsible person rather than as a kind of robot programmed for repetitive performance.

Job satisfaction and personal development

From the principle that the worker or human operator should be recognized as a person and not a robot it follows that consideration should be given to responsibilities, attitudes, beliefs and values. This is not easy because there are many variables, mostly detectable but not quantifiable, and there are large individual and cultural differences. Nevertheless a great deal of effort now goes into the design and management of work with the aim of ensuring that the situation is as satisfactory as is reasonably practicable from the operator’s viewpoint. Some measurement is possible by using survey techniques and some principles are available based on such working features as autonomy and empowerment. 

Even accepting that these efforts take time and cost money, there can still be considerable dividends from listening to the suggestions, opinions and attitudes of the people actually doing the work. Their approach may not be the same as that of the external work designer and not the same as the assumptions made by the work designer or manager. These differences of view are important and can provide a refreshing change in strategy on the part of everyone involved.

It is well established that the human being is a continuous learner or can be, given the appropriate conditions. The key condition is to provide feedback about past and present performance which can be used to improve future performance. Moreover, such feedback itself acts as an incentive to performance. Thus everyone gains, the performer and those responsible in a wider sense for the performance. It follows that there is much to be gained from performance improvement, including self-development. The principle that personal development should be an aspect of the application of ergonomics requires greater designer and manager skills but, if it can be applied successfully, can improve all the aspects of human performance discussed above.

Successful application of ergonomics often follows from doing no more than developing the appropriate attitude or point of view. The people involved are inevitably the central factor in any human effort and the systematic consideration of their advantages, limitations, needs and aspirations is inherently important.


Ergonomics is the systematic study of people at work with the objective of improving the work situation, the working conditions and the tasks performed. The emphasis is on acquiring relevant and reliable evidence on which to base recommendation for changes in specific situations and on developing more general theories, concepts, guidelines and procedures which will contribute to the continually developing expertise available from ergonomics.


Véronique De Keyser

It is difficult to speak of work analysis without putting it in the perspective of recent changes in the industrial world, because the nature of activities and the conditions in which they are carried out have undergone considerable evolution in recent years. The factors giving rise to these changes have been numerous, but there are two whose impact has proved crucial. On the one hand, technological progress with its ever-quickening pace and the upheavals brought about by information technologies have revolutionized jobs (De Keyser 1986). On the other hand, the uncertainty of the economic market has required more flexibility in personnel management and work organization. If the workers have gained a wider view of the production process that is less routine-oriented and undoubtedly more systematic, they have at the same time lost exclusive links with an environment, a team, a production tool. It is difficult to view these changes with serenity, but we have to face the fact that a new industrial landscape has been created, sometimes more enriching for those workers who can find their place in it, but also filled with pitfalls and worries for those who are marginalized or excluded. However, one idea is being taken up in firms and has been confirmed by pilot experiments in many countries: it should be possible to guide changes and soften their adverse effects with the use of relevant analyses and by using all resources for negotiation between the different work actors. It is within this context that we must place work analyses today—as tools allowing us to describe tasks and activities better in order to guide interventions of different kinds, such as training, the setting up of new organizational modes or the design of tools and work systems. We speak of analyses, and not just one analysis, since there exist a large number of them, depending on the theoretical and cultural contexts in which they are developed, the particular goals they pursue, the evidence they collect, or the analyser’s concern for either specificity or generality. In this article, we will limit ourselves to presenting a few characteristics of work analyses, and emphasizing the importance of collective work. Our conclusions will highlight other paths that the limits of this text prevent us from pursuing in greater depth.

Some Characteristics of Work Analyses

The context

If the primary goal of any work analysis is to describe what the operator does, or should do, placing it more precisely into its context has often seemed indispensable to researchers. They mention, according to their own views, but in a broadly similar manner, the concepts of context, situation, environment, work domain, work world or work environment. The problem lies less in the nuances between these terms than in the selection of variables that need to be described in order to give them a useful meaning. Indeed, the world is vast and industry is complex, and the characteristics that could be referred to are innumerable. Two tendencies can be noted among authors in the field. The first one sees the description of the context as a means of capturing the reader’s interest and providing him or her with an adequate semantic framework. The second has a different theoretical perspective: it attempts to embrace both context and activity, describing only those elements of the context that are capable of influencing the behaviour of operators.

The semantic framework

Context has evocative power. It is enough, for an informed reader, to read about an operator in a control room engaged in a continuous process to call up a picture of work through commands and surveillance at a distance, where the tasks of detection, diagnosis and regulation predominate. What variables need to be described in order to create a sufficiently meaningful context? It all depends on the reader. Nonetheless, there is a consensus in the literature on a few key variables. The nature of the economic sector, the type of production or service, the size and the geographical location of the site are useful. 

The production processes, the tools or machines and their level of automation allow certain constraints and certain necessary qualifications to be guessed at. The structure of the personnel, together with age and level of qualification and experience are crucial data whenever the analysis concerns aspects of training or of organizational flexibility. The organization of work established depends more on the firm’s philosophy than on technology. Its description includes, notably, work schedules, the degree of centralization of decisions and the types of control exercised over the workers. Other elements may be added in different cases. They are linked to the firm’s history and culture, its economic situation, work conditions and any restructuring, mergers and investments. There exist at least as many systems of classification as there are authors, and there are numerous descriptive lists in circulation. In France, a special effort has been made to generalize simple descriptive methods, notably allowing for the ranking of certain factors according to whether or not they are satisfactory for the operator (RNUR 1976; Guelaud et al. 1977).

The description of relevant factors regarding the activity

The taxonomy of complex systems described by Rasmussen, Pejtersen and Schmidts (1990) represents one of the most ambitious attempts to cover at the same time the context and its influence on the operator. Its main idea is to integrate, in a systematic fashion, the different elements of which it is composed and to bring out the degrees of freedom and the constraints within which individual strategies can be developed. Its exhaustive aim makes it difficult to manipulate, but the use of multiple modes of representation, including graphs, to illustrate the constraints has a heuristic value that is bound to be attractive to many readers. Other approaches are more targeted. What the authors seek is the selection of factors that can influence a precise activity. Hence, with an interest in the control of processes in a changing environment, Brehmer (1990) proposes a series of temporal characteristics of the context which affect the control and anticipation of the operator (see figure 29.1). This author’s typology has been developed from “micro-worlds”, computerized simulations of dynamic situations, but the author himself, along with many others since, used it for the continuous-process industry (Van Daele 1992). For certain activities, the influence of the environment is well known, and the selection of factors is not too difficult. Thus, if we are interested in heart rate in the work environment, we often limit ourselves to describing the air temperatures, the physical constraints of the task or the age and training of the subject—even though we know that by doing so we perhaps leave out relevant elements. For others, the choice is more difficult. Studies on human error, for example, show that the factors capable of producing them are numerous (Reason 1989). Sometimes, when theoretical knowledge is insufficient, only statistical processing, combining context and activity analysis, allows us to bring out the relevant contextual factors (Fadier 1990).

Figure 29.1 The criteria and sub-criteria of the taxonomy of micro-worlds proposed by Brehmer (1990)

The Task or the Activity?

The task

The task is defined by its objectives, its constraints and the means it requires for achievement. A function within the firm is generally characterized by a set of tasks. The realized task differs from the prescribed task scheduled by the firm for a large number of reasons: the strategies of operators vary within and among individuals, the environment fluctuates and random events require responses that are often outside the prescribed framework. Finally, the task is not always scheduled with correct knowledge of its conditions of execution, hence the need for adaptations in real time. But even if the task is updated during the activity, sometimes to the point of being transformed, it still remains the central reference.

Questionnaires, inventories and taxonomies of tasks are numerous, especially in the English-language literature—the reader will find excellent reviews in Fleishman and Quaintance (1984) and in Greuter and Algera (1989). Certain of these instruments are merely lists of elements—for example, the action verbs to illustrate tasks—that are checked off according to the function studied. Others have adopted a hierarchical principle, characterizing a task as interlocking elements, ordered from the global to the particular. These methods are standardized and can be applied to a large number of functions; they are simple to use, and the analytical stage is much shortened. But where it is a question of defining specific work, they are too static and too general to be useful.

Next, there are those instruments requiring more skill on the part of the researcher; since the elements of analysis are not predefined, it is up to the researcher to characterize them. The already outdated critical incident technique of Flanagan (1954), where the observer describes a function by reference to its difficulties and identifies the incidents which the individual will have to face, belongs to this group.

It is also the path adopted by cognitive task analysis (Roth and Woods 1988). This technique aims to bring to light the cognitive requirements of a job. One way to do this is to break the job down into goals, constraints and means. Figure 29.2  shows how the task of an anaesthetist, characterized first by a very global goal of patient survival, can be broken down into a series of sub-goals, which can themselves be classified as actions and means to be employed. More than 100 hours of observation in the operating theatre and subsequent interviews with anaesthetists were necessary to obtain this synoptic “photograph” of the requirements of the function. This technique, although quite laborious, is nevertheless useful in ergonomics in determining whether all the goals of a task are provided with the means of attaining them. It also allows for an understanding of the complexity of a task (its particular difficulties and conflicting goals, for example) and facilitates the interpretation of certain human errors. But it suffers, as do other methods, from the absence of a descriptive language (Grant and Mayes 1991). Moreover, it does not permit hypotheses to be formulated as to the nature of the cognitive processes brought into play to attain the goals in question.

Figure 29.2 Cognitive analysis of the task: general anaesthesia

Other approaches have analysed the cognitive processes associated with given tasks by drawing up hypotheses as to the information processing necessary to accomplish them. A frequently employed cognitive model of this kind is Rasmussen’s (1986), which provides, according to the nature of the task and its familiarity for the subject, three possible levels of activity—based either on skill-based habits and reflexes, on acquired rule-based procedures or on knowledge-based procedures. But other models or theories that reached the height of their popularity during the 1970s remain in use. Hence, the theory of optimal control, which considers man as a controller of discrepancies between assigned and observed goals, is sometimes still applied to cognitive processes. And modelling by means of networks of interconnected tasks and flow charts continues to inspire the authors of cognitive task analysis; figure 29.3  provides a simplified description of the behavioural sequences in an energy-control task, constructing a hypothesis about certain mental operations. All these attempts reflect the concern of researchers to bring together in the same description not only elements of the context, but also the task itself and the cognitive processes that underlie it—and to reflect the dynamic character of work as well.

Figure 29.3 Simplified description of the determinants of a behaviour sequence  in an energy control taks:  case of unacceptable consumption of energy

Since the arrival of the scientific organization of work, the concept of the prescribed task has been adversely criticized because it has been viewed as involving the imposition on workers of tasks that are not only designed without consulting their needs, but are often accompanied by a specific performance time, a restriction not welcomed by many workers. Even if the imposition aspect has become rather more flexible today and even if the workers contribute more often to the design of tasks, an assigned time for tasks remains necessary for schedule planning and remains an essential component of work organization. The quantification of time should not always be perceived in a negative manner. It constitutes a valuable indicator of workload. A simple but common method of measuring the time pressure exerted on a worker consists of determining the quotient of the time necessary for the execution of a task divided by the available time. The closer this quotient is to unity, the greater the pressure (Wickens 1992). Moreover, quantification can be used in flexible but appropriate personnel management. Let us take the case of nurses where the technique of predictive analysis of tasks has been generalized, for example, in the Canadian regulation Planning of Required Nursing (PRN 80) (Kepenne 1984) or one of its European variants. Thanks to such task lists, accompanied by their mean time of execution, one can, each morning, taking into account the number of patients and their medical conditions, establish a care schedule and a distribution of personnel. Far from being a constraint, PRN 80 has, in a number of hospitals, demonstrated that a shortage of nursing personnel exists, since the technique allows a difference to be established (see figure 29.4) between the desired and the observed, that is, between the number of staff necessary and the number available, and even between the tasks planned and the tasks carried out. The times calculated are only averages, and the fluctuations in the situation do not always make them applicable, but this negative aspect is minimized by a flexible organization that accepts adjustments and allows the personnel to participate in effecting those adjustments.

Figure 29.4 Discrepancies between the numbers of personnel present and required  on the basis of PRN80

The activity, the evidence and the performance

An activity is defined as the set of behaviours and resources used by the operator so that work occurs—that is to say, the transformation or production of goods or the rendering of a service. This activity can be understood through observation in different ways. Faverge (1972) has described four forms of analysis. The first is an analysis in terms of gestures and postures, where the observer locates, within the visible activity of the operator, classes of behaviour that are recognizable and repeated during work. These activities are often coupled with a precise response: for example, the heart rate, which allows us to assess the physical load associated with each activity. The second form of analysis is in terms of information uptake. What is discovered, through direct observation—or with the aid of cameras or recorders of eye movements—is the set of signals picked up by the operator in the information field surrounding him or her. This analysis is particularly useful in cognitive ergonomics in trying to better understand the information processing carried out by the operator. The third type of analysis is in terms of regulation. The idea is to identify the adjustments of activity carried out by the operator in order to deal with either fluctuations in the environment or changes in his own condition. There we find the direct intervention of context within the analysis. One of the most frequently cited research projects in this area is that of Sperandio (1972). This author studied the activity of air traffic controllers and identified important strategy changes during an increase in air traffic. He interpreted them as an attempt to simplify the activity by aiming to maintain an acceptable load level, while at the same time continuing to meet the requirements of the task. The fourth is an analysis in terms of thought processes. This type of analysis has been widely used in the ergonomics of highly automated posts. Indeed, the design of computerized aids, and notably intelligent aids for the operator, requires a thorough understanding of the way in which the operator reasons in order to solve certain problems. The reasoning involved in scheduling, anticipation and diagnosis has been the subject of analyses, an example of which can be found in figure 29.5 . However, the evidence of mental activity can only be inferred. Apart from certain observable aspects of behaviour, such as eye movements and problem-solving time, most of these analyses resort to verbal response. Particular emphasis has been placed, in recent years, on the knowledge necessary to accomplish certain activities, with researchers trying not to postulate them at the outset but to make them apparent through the analysis itself.

Figure 29.5 Analysis of mental activity. Strategies in the control of processes  with long response times: need for computerized support in diagnosis

Such efforts have brought to light the fact that almost identical performances can be obtained with very different levels of knowledge, as long as operators are aware of their limits and apply strategies adapted to their capabilities. Hence, in our study of the start-up of a thermoelectric plant (De Keyser and Housiaux 1989), the start-ups were carried out by both engineers and operators. The theoretical and procedural knowledge that these two groups possessed, which had been elicited by means of interviews and questionnaires, were very different. The operators in particular sometimes had an erroneous understanding of the variables in the functional links of the process. In spite of this, the performances of the two groups were very close. But the operators took into account more variables in order to verify the control of the start-up and undertook more frequent verifications. Such results were also obtained by Amalberti (1991), who mentioned the existence of metaknowledges allowing experts to manage their own resources.

What evidence of activity is appropriate to elicit? Its nature, as we have seen, depends closely on the form of analysis planned. Its form varies according to the degree of methodological care exercised by the observer. Provoked evidence is distinguished from spontaneous evidence, and concomitant from subsequent evidence. Generally speaking, when the nature of the work allows, concomitant and spontaneous evidence are to be preferred. They are free of various drawbacks such as unreliability of memory, observer interference, the effect of rationalizing reconstruction on the part of the subject, and so forth. To illustrate these distinctions, we will take the example of verbalizations. Spontaneous verbalizations are verbal exchanges, or monologues expressed spontaneously without being requested by the observer; provoked verbalizations are those made at the specific request of the observer, such as the request made to the subject to “think aloud”, which is well known in the cognitive literature. Both types can be done in real time, during work, and are thus concomitant. 

They can also be subsequent, as in interviews, or subjects’ verbalizations when they view videotapes of their work. As for the validity of the verbalizations, the reader should not ignore the doubt raised in this regard by the controversy between Nisbett and De Camp Wilson (1977) and White (1988) and the precautions suggested by numerous authors aware of their importance in the study of mental activity in view of the methodological difficulties encountered (Ericson and Simon 1984; Savoyant and Leplat 1983; Caverni 1988; Bainbridge 1986).

The organization of this evidence, its processing and its formalization require descriptive languages and sometimes analyses which go beyond field observation. Those mental activities which are inferred from the evidence, for example, remain hypothetical. Today they are often described using languages derived from artificial intelligence, making use of representations in terms of schemes, production rules and connecting networks. Moreover, the use of computerized simulations—of micro-worlds—to pinpoint certain mental activities has become widespread, even though the validity of the results obtained from such computerized simulations, in view of the complexity of the industrial world, is subject to debate. Finally, we must mention the cognitive modellings of certain mental activities extracted from the field. Among the best known are the diagnosis of the operator of a nuclear power plant, carried out in ISPRA (Decortis and Cacciabue 1990), and the planning of the combat pilot perfected in Centre d’études et de recherches de médecine aérospatiale (CERMA) (Amalberti et al. 1989).

Measurement of the discrepancies between the performance of these models and that of real, living operators is a fruitful field in activity analysis. Performance is the outcome of the activity, the final response given by the subject to the requirements of the task. It is expressed at the level of production: productivity, quality, error, incident, accident—and even, at a more global level, absenteeism or turnover. But it must also be identified at the individual level: the subjective expression of satisfaction, stress, fatigue or workload, and many physiological responses are also performance indicators. Only the entire set of data permits interpretation of the activity—that is to say, judging whether or not it furthers the desired goals, while remaining within human limits. There exists a set of norms which, up to a certain point, guide the observer. But these norms are not situated—they do not take into account the context, its fluctuations and the condition of the worker. This is why in design ergonomics, even when rules, norms and models exist, designers are advised to test the product using prototypes as early as possible and to evaluate the users’ activity and performance.

Individual or Collective Work?

While in the vast majority of cases, work is a collective act, most work analyses focus on tasks or individual activities. Nonetheless the fact is that technological evolution, just like work organization, today emphasizes distributed work, whether it be between workers and machines or simply within a group. What paths have been explored by authors so as to take this distribution into account (Rasmussen, Pejtersen and Schmidts 1990)? They focus on three aspects: structure, the nature of exchanges and structural lability.


Whether we view structure as elements of the analysis of people, or of services, or even of different branches of a firm working in a network, the description of the links that unite them remains a problem. We are very familiar with the organigrams within firms that indicate the structure of authority and whose various forms reflect the organizational philosophy of the firm—very hierarchically organized for a Taylor-like structure, or flattened like a rake, even matrix-like, for a more flexible structure. Other descriptions of distributed activities are possible: an example is given in figure 29.6 . More recently, the need for firms to represent their information exchanges at a global level has led to a rethinking of information systems. Thanks to certain descriptive languages—for example, design schemas, or entity-relations-attribute matrixes—the structure of relations at the collective level can today be described in a very abstract manner and can serve as a springboard for the creation of computerized management systems.

Figure 29.6 Integrated life cycle design

The nature of exchanges

Simply having a description of the links uniting the entities says little about the content itself of the exchanges; of course the nature of the relation can be specified—movement from place to place, information transfers, hierarchical dependence, and so on—but this is often quite inadequate. The analysis of communications within teams has become a favoured means of capturing the very nature of collective work, encompassing subjects mentioned, creation of a common language in a team, modification of communications when circumstances are critical, and so forth (Tardieu, Nanci and Pascot 1985; Rolland 1986; Navarro 1990; Van Daele 1992; Lacoste 1983; Moray, Sanderson and Vincente 1989). Knowledge of these interactions is particularly useful for the creation of computer tools, notably decision-making aids for understanding errors. The different stages and the methodological difficulties linked to the use of this evidence have been well described by Falzon (1991).

Structural lability

It is the work on activities rather than on tasks that has opened up the field of structural lability—that is to say, of the constant reconfigurations of collective work under the influence of contextual factors. Studies such as those of Rogalski (1991), who over a long period analysed the collective activities dealing with forest fires in France, and Bourdon and Weill Fassina (1994), who studied the organizational structure set up to deal with railway accidents, are both very informative. They clearly show how the context moulds the structure of exchanges, the number and type of actors involved, the nature of the communications and the number of parameters essential to the work. The more this context fluctuates, the further the fixed descriptions of the task are removed from reality. Knowledge of this lability, and a better understanding of the phenomena that take place within it, are essential in planning for the unpredictable and in order to provide better training for those involved in collective work in a crisis.


The various phases of the work analysis that have been described are an iterative part of any human factors design cycle (see figure 29.6). In this design of any technical object, whether a tool, a workstation or a factory, in which human factors are a consideration, certain information is needed in time. In general, the beginning of the design cycle is characterized by a need for data involving environmental constraints, the types of jobs that are to be carried out, and the various characteristics of the users. This initial information allows the objects specifications to be drawn up so as to take into account work requirements. But this is, in some sense, only a coarse model compared to the real work situation. This explains why models and prototypes are necessary that, from their inception, allow not the jobs themselves, but the activities of the future users to be evaluated. Consequently, while the design of the images on a monitor in a control room can be based on a thorough cognitive analysis of the job to be done, only a data-based analysis of the activity will allow an accurate determination of whether the prototype will actually be of use in the actual work situation (Van Daele 1988). Once the finished technical object is put into operation, greater emphasis is put on the performance of the users and on dysfunctional situations, such as accidents or human error. The gathering of this type of information allows the final corrections to be made that will increase the reliability and usability of the completed object. Both the nuclear industry and the aeronautics industry serve as example: operational feedback involves reporting every incident that occurs. In this way, the design loop comes full circle.


Friedhelm Nachreiner


Standardization in the field of ergonomics has a relatively short history. It started in the beginning of the 1970s when the first committees were founded on the national level (e.g., in Germany within the standardization institute DIN), and it continued on an international level after the foundation of the ISO (International Organization for Standardization) TC (Technical Committee) 159 “Ergonomics”, in 1975. In the meantime ergonomics standardization takes place on regional levels as well, for example, on the European level within the CEN  (Commission européenne de normalisation), which established its TC 122 “Ergonomics” in 1987. The existence of the latter committee underscores the fact that one of the important reasons for establishing committees for the standardization of ergonomics knowledge and principles can be found in legal (and quasi-legal) regulations, especially with respect to safety and health, which require the application of ergonomics principles and findings in the design of products and work systems. National laws requiring the application of well-established ergonomics findings were the reason for the establishment of the German ergonomics committee in 1970, and European Directives, especially the Machinery Directive (relating to safety standards), were responsible for establishing an ergonomics committee on the European level. Since legal regulations usually are not, cannot and should not be very specific, the task of specifying which ergonomics principles and findings should be applied was given to or taken up by ergonomics standardization committees. Especially on the European level, it can be recognized that ergonomics standardization can contribute to the task of providing for broad and comparable conditions of machinery safety, thus removing barriers to the free trade of machinery within the continent itself.


Ergonomics standardization thus started with a strong protective, although preventive, perspective, with ergonomics standards being developed with the aim of protecting workers against adverse effects at different levels of health protection. Ergonomics standards were thus prepared with the following intentions in view:

·     to ensure that assigned tasks do not exceed the limits of the performance capacities of the worker

·     to prevent injury or any detrimental effects to the health of the worker whether permanent or transient, either in the short or in the long run, even if the tasks in question can be performed, if only for a short time, without negative effects

·     to provide that tasks and working conditions will not lead to impairments, even if recuperation is possible with time.

International standardization, which was not so closely coupled to legislation, on the other hand, always also tried to open a perspective in the direction of producing standards which would go beyond the prevention of and protection against adverse effects (e.g., by specifying minimal/maximal values) and instead proactively provide for optimal working conditions to promote the well-being and personal development of the worker, as well as the effectiveness, efficiency, reliability and productivity of the work system.

This is a point where it becomes evident that ergonomics, and especially ergonomics standardization, has very distinct social and political dimensions. Whereas the protective approach with respect to safety and health is generally accepted and agreed upon among the parties involved (employers, unions, administration and ergonomics experts) for all levels of standardization, the proactive approach is not equally accepted by all parties in the same way. This might be due to the fact that, especially where legislation requires the application of ergonomics principles (and thus either explicitly or implicitly the application of ergonomics standards), some parties feel that such standards might limit their freedom of action or negotiation. Since international standards are less compelling (transferring them into the body of national standards is at the discretion of the national standardization committees) the proactive approach has been developed furthest at the international level of ergonomics standardization.

The fact that certain regulations would indeed restrict the discretion of those to whom they applied served to discourage standardization in certain areas, for example in connection with the European Directives under Article 118a of the Single European Act, relating to safety and health in the use and operation of machinery at the workplace, and in the design of work systems and workplace design. On the other hand, under the Directives issued under Article 100a, relating to safety and health in the design of machinery with regard to the free trade of this machinery within the European Union (EU), European ergonomics standardization is mandated by the European Commission.

From an ergonomics point of view, however, it is difficult to understand why ergonomics in the design of machinery should be different from that in the use and operation of machinery within a work system. It is thus to be hoped that the distinction will be given up in the future, since it seems to be more detrimental than beneficial to the development of a consistent body of ergonomics standards.

Types of Ergonomics Standards

The first international ergonomics standard to have been developed (based on a German DIN national standard) is ISO 6385, “Ergonomic principles in the design of work systems”, published in 1981. It is the basic standard of the ergonomics standards series and set the stage for the standards which followed by defining the basic concepts and stating the general principles of the ergonomic design of work systems, including tasks, tools, machinery, workstations, work space, work environment and work organization. This international standard, which is now undergoing revision, is a guideline standard, and as such provides guidelines to be followed. It does not, however, provide technical or physical specifications which have to be met. These can be found in a different type of standards, that is, specification standards, for example, those on anthropometry or thermal conditions. Both types of standards fulfil different functions. While guideline standards intend to show their users “what to do and how to do it” and indicate those principles that must or should be observed, for example, with respect to mental workload, specification standards provide users with detailed information about safety distances or measurement procedures, for example, that have to be met and where compliance with these prescriptions can be tested by specified procedures. This is not always possible with guideline standards, although despite their relative lack of specificity it can usually be demonstrated when and where guidelines have been violated. A subset of specification standards are “database” standards, which provide the user with relevant ergonomics data, for example, body dimensions.

CEN standards are classified as A-, B- and C-type standards, depending on their scope and field of application. A-type standards are general, basic standards which apply to all kinds of applications, B-type standards are specific for an area of application (which means that most of the ergonomics standards within the CEN will be of this type), and C-type standards are specific for a certain kind of machinery, for example, hand-held drilling machines.

Standardization Committees

Ergonomics standards, like other standards, are produced in the appropriate technical committees (TCs), their subcommittees (SCs) or working groups (WGs). For the ISO this is TC 159, for CEN it is TC 122, and on the national level, the respective national committees. Besides the ergonomics committees, ergonomics is also dealt with in TCs working on machine safety (e.g., CEN TC 114 and ISO TC 199) with which liaison and close cooperation is maintained. Liaisons are also established with other committees for which ergonomics might be of relevance. Responsibility for ergonomics standards, however, is reserved to the ergonomics committees themselves.

A number of other organizations are engaged in the production of ergonomics standards, such as the IEC (International Electrotechnical Commission); CENELEC, or the respective national committees in the electrotechnical field; CCITT (Comité consultative international des organisations téléphoniques et télégraphiques) or ETSI (European Telecommunication Standards Institute) in the field of telecommunications; ECMA (European Computer Manufacturers Association) in the field of computer systems; and CAMAC (Computer Assisted Measurement and Control Association) in the field of new technologies in manufacturing, to name only a few. With some of these the ergonomics committees do have liaisons in order to avoid duplication of work or inconsistent specifications; with some organizations (e.g., the IEC) even joint technical committees are established for cooperation in areas of mutual interest. With other committees, however, there is no coordination or cooperation at all. The main purpose of these committees is to produce (ergonomics) standards that are specific to their field of activity. Since the number of such organizations at the different levels is rather large, it becomes quite complicated (if not impossible) to carry out a complete overview of ergonomics standardization. The present review will therefore be restricted to ergonomics standardization in the international and European ergonomics committees.

Structure of Standardization Committees

Ergonomics standardization committees are quite similar to one another in structure. Usually one TC within a standardization organization is responsible for ergonomics. This committee (e.g., ISO TC 159) mainly has to do with decisions about what should be standardized (e.g., work items) and how to organize and coordinate the standardization within the committee, but usually no standards are prepared at this level. Below the TC level are other committees. For example, the ISO has subcommittees (SCs), which are responsible for a defined field of standardization: SC 1 for general ergonomic guiding principles, SC 3 for anthropometry and biomechanics, SC 4 for human-system interaction and SC 5 for the physical work environment. CEN TC 122 has working groups (WGs) below the TC level which are so constituted as to deal with specified fields within ergonomics standardization. SCs within ISO TC 159 operate as steering committees for their field of responsibility and do the first voting, but usually they do not also prepare standards. This is done in their WGs, which are composed of experts nominated by their national committees, whereas SC and TC meetings are attended by national delegations representing national points of view. Within the CEN, duties are not sharply distinguished at the WG level; WGs operate both as steering and production committees, although a good deal of work is accomplished in ad hoc groups, which are composed of members of the WG (nominated by their national committees) and established to prepare the drafts for a standard. WGs within an ISO SC are established to do the practical standardization work, that is, prepare drafts, work on comments, identify needs for standardization, and prepare proposals to the SC and TC, which will then take the appropriate decisions or actions.

Preparation of Ergonomics Standards

The preparation of ergonomics standards has changed quite markedly within the last years in view of the stronger emphasis now being placed on European and other international developments. In the beginning, national standards, which had been prepared by experts from one country in their national committee and agreed upon by the interested parties among the general public of that country in a specified voting procedure, were transferred as input to the responsible SC and WG of ISO TC 159, after a formal vote had been taken at the TC level that such an international standard should be prepared. The working group, composed of ergonomics experts (and experts from politically interested parties) from all participating member bodies (i.e., the national standardization organizations) of TC 159 who were willing to cooperate in this work project, would then work on any inputs and prepare a working draft (WD). After this draft proposal is agreed upon in the WG, it becomes a committee draft (CD), which is distributed to the member bodies of the SC for approval and comments. If the draft receives substantial support from the SC member bodies (i.e., if at least two-thirds vote in favour) and after comments by the national committees have been incorporated by the WG in the improved version, a Draft International Standard (DIS) is submitted for voting to all members of TC 159. If substantial support, at this step from the member bodies of the TC, is achieved (and perhaps after incorporating editorial changes), this version will then be published as an International Standard (IS) by the ISO. Voting of the member bodies at the TC and SC level is based on voting at the national level, and comments can be supplied through the member bodies by experts or interested parties in each country. The procedure is roughly equivalent in CEN TC 122, with the exception that there are no SCs below the TC level and that voting takes part with weighted votes (according to the size of the country) whereas within the ISO the rule is one country, one vote. If a draft fails at any step, and unless the WG decides that an agreeable revision cannot be achieved, it has to be revised and then has to pass through the voting procedure again.

International standards are then transferred into national standards if the national committees vote accordingly. By contrast, European Standards (ENs) have to be transferred into national standards by the CEN members and conflicting national standards have to be withdrawn. That means that harmonized ENs will be effective in all CEN countries (and, due to their influence on trade, will be relevant to manufacturers in all other countries who intend to sell goods to a customer in a CEN country).

ISO-CEN Cooperation

In order to avoid conflicting standards and duplication of work and to allow non-CEN members to take part in developments in the CEN, a cooperative agreement between the ISO and the CEN has been achieved (the so-called Vienna Agreement) which regulates the formalities and provides for a so-called parallel voting procedure, which allows the same drafts to be voted upon in the CEN and the ISO in parallel, if the responsible committees agree to do so. Among the ergonomics committees the tendency is quite clear: avoid duplication of work (manpower and financial resources are too limited), avoid conflicting specifications, and try to achieve a consistent body of ergonomics standards based on a division of labour. Whereas CEN TC 122 is bound by the decisions of the EU administration and gets mandated work items to stipulate the specifications of European directives, ISO TC 159 is free to standardize whatever it thinks necessary or appropriate in the field of ergonomics. This has led to shifts in the emphasis of both committees, with the CEN concentrating on machinery and safety-related topics and the ISO concentrating on areas where broader market interests than Europe are concerned (e.g., work with VDUs and control-room design for process and related industries); on areas where the operation of machinery is concerned, as in work system design; and on such areas as work environment and work organization as well. The intention, however, is to transfer work results from the CEN to the ISO, and vice versa, in order to build up a body of consistent ergonomics standards which in fact are effective all over the world.

The formal procedure of producing standards is still the same today. But since the emphasis has shifted more and more to the international or the European level, more and more activities are being transferred to these committees. Drafts are now usually worked out directly in these committees and are no longer based on existing national standards. After the decision has been made that a standard should be developed, work directly starts at one of these supranational levels, based on whatever input there may be available, sometimes starting from zero. This changes the role of the national ergonomics committees quite dramatically. While heretofore they formally developed their own national standards according to their national rules, they now have the task of observing and influencing standardization on the supranational levels—via the experts who work out the standards or via comments made at the different steps of voting (within the CEN, a national standardization project will be halted if a comparable project is being simultaneously worked on at the CEN level). This makes the task still more complicated, since this influence can only be exerted indirectly and since the preparation of ergonomics standards is not just a matter of pure science but a matter of bargaining, consensus and agreement (not least due to the political implications which the standard might have). This, of course, is one of the reasons why the process of producing an international or European ergonomics standard usually takes several years and why ergonomics standards cannot reflect the latest state of the art in ergonomics. International ergonomics standards thus have to be examined every five years, and, if necessary, undergo revision.

Fields of Ergonomics Standardization

International ergonomics standardization started with guidelines on the general principles of ergonomics in the design of work systems; they were laid down in ISO 6385, which is now under revision in order to incorporate new developments. The CEN has produced a similar basic standard (EN 614, Part 1, 1994)—this is oriented more to machinery and safety—and is preparing a standard with guidelines on task design as a second part of this basic standard. The CEN thus emphasizes the importance of operator tasks in the design of machinery or work systems, for which appropriate tools or machinery have to be designed.

Another area where concepts and guidelines have been laid down in standards is the field of mental workload. ISO 10075, Part 1, defines terms and concepts (e.g., fatigue, monotony, reduced vigilance), and Part 2 (at the stage of a DIS in the latter half of the 1990s) provides guidelines for the design of work systems with respect to mental workload in order to avoid impairments.

SC 3 of ISO TC 159 and WG 1 of CEN TC 122 produce standards on anthropometry and biomechanics, covering, among other topics, methods of anthropometric measurements, body dimensions, safety distances and access dimensions, the evaluation of working postures and the design of workplaces in relation to machinery, recommended limits of physical strength and problems of manual handling.

SC 4 of ISO 159 shows how technological and social changes affect ergonomics standardization and the programme of such a subcommittee. SC 4 started as “Signals and Controls” by standardizing principles for displaying information and designing control actuators, with one of its work items being the visual display unit (VDU), used for office tasks. It soon became apparent, however, that standardizing the ergonomics of VDUs would not be sufficient, and that standardization “around” this workstation—in the sense of a work system—was required, covering areas such as hardware (e.g., the VDU itself, including displays, keyboards, non-keyboard input devices, workstations), work environment (e.g., lighting), work organization (e.g., task requirements), and software (e.g., dialogue principles, menu and direct manipulation dialogues). This led to a multipart standard (ISO 9241) covering “ergonomic requirements for office work with VDUs” with at the moment 17 parts, 3 of which have reached the status of an IS already. This standard will be transferred to the CEN (as EN 29241) which will specify requirements for the VDU directive (90/270 EEC) of the EU—although this is a directive under article 118a of the Single European Act. This series of standards provides guidelines as well as specifications, depending on the subject of the given part of the standard, and introduces a new concept of standardization, the user performance approach, which might help to solve some of the problems in ergonomics standardization. It is described more fully in the chapter Visual Display Units.

The user performance approach is based on the idea that the aim of standardization is to prevent impairment and to provide for optimal working conditions for the operator, but not to establish technical specification per se. Specification is thus regarded only as a means to the end of unimpaired, optimal user performance. The important thing is to achieve this unimpaired performance of the operator, regardless of whether a certain physical specification is met. This requires that the unimpaired operator performance which has to be achieved, for example, reading performance on a VDU, must be specified in the first place, and second, that technical specifications be developed which will enable the desired performance to be achieved, based on the available evidence. The manufacturer is then free to follow these technical specifications, which will ensure that the product complies with the ergonomics requirements. Or he may demonstrate, by comparison with a product that is known to fulfil the requirements (either by compliance with the technical specifications of the standard or by proven performance), that with the new product the performance requirements are equally or better fulfilled than with the reference product, with or without compliance to the technical specifications of the standard. A test procedure which has to be followed for demonstrating conformance with the user performance requirements of the standard is specified in the standard.

This approach helps to overcome two problems. Standards, by virtue of their specifications, which are based on the state of the art (and technology) at the time of preparation of the standard, can restrict new developments. Specifications that are based on a certain technology (e.g., cathode-ray tubes) may be inappropriate for other technologies. Independently of technology, however, the user of a display device (for instance) should be able to read and understand the information displayed effectively and efficiently without any impairments, irrespective of whatever technique may be used. Performance in this case must, however, not be restricted to the pure output (as measured in terms of speed or accuracy) but must include considerations of comfort and effort as well.

The second problem that can be dealt with by this approach is the problem of interactions between conditions. Physical specification usually is unidimensional, leaving other conditions out of consideration. In the case of interactive effects, however, this can be misleading or even wrong. By specifying performance requirements, on the other hand, and leaving the means to achieve these to the manufacturer, any solution that satisfies these performance requirements will be acceptable. Treating specification as a means to an end thus represents a genuine ergonomic perspective.

Another standard with a work system approach is under preparation in SC 4, which relates to the design of control rooms, for instance, for process industries or power stations. A multipart standard (ISO 11064) is expected to be prepared as a result, with the different parts dealing with such aspects of control-room design as layout, operator workstation design, and the design of displays and input devices for process control. Because these work items and the approach taken clearly exceed problems of the design of “displays and controls”, SC 4 has been renamed “Human-System Interaction”.

Environmental problems, especially those relating to thermal conditions and communication in noisy environments, are dealt with in SC 5, where standards have been or are being prepared on measurement methods, methods for the estimation of heat stress, conditions of thermal comfort, metabolic heat production, and on auditory and visual danger signals, speech interference level and the assessment of speech communication.

CEN TC 122 covers roughly the same fields of ergonomics standardization, although with a different emphasis and a different structure of its working groups. It is intended, however, that by a division of labour between the ergonomics committees, and mutual acceptance of work results, a general and usable set of ergonomics standards will be developed.


Pranab Kumar Nag

Work systems encompass such macro level organizational variables as the personnel subsystem, the technological subsystem and the external environment. The analysis of work systems is, therefore, essentially an effort to understand the allocation of functions between the worker and the technical outfit and the division of labour between people in a sociotechnical environment. Such an analysis can assist in making informed decisions to enhance systems safety, efficiency in work, technological development and the mental and physical well-being of workers.

Researchers examine work systems according to divergent approaches (mechanistic, biological, perceptual/motor, motivational) with corresponding individual and organizational outcomes (Campion and Thayer 1985). The selection of methods in work systems analysis is dictated by the specific approaches taken and the particular objective in view, the organizational context, the job and human characteristics, and the technological complexity of the system under study (Drury 1987). Checklists and questionnaires are the common means of assembling databases for organizational planners in prioritizing action plans in areas of personnel selection and placement, performance appraisal, safety and health management, worker-machine design and work design or redesign. Inventory methods of checklists, for example the Position Analysis Questionnaire, or PAQ (McCormick 1979), the Job Components Inventory (Banks and Miller 1984), the Job Diagnostic Survey (Hackman and Oldham 1975), and the Multi-method Job Design Questionnaire (Campion 1988) are the more popular instruments, and are directed to a variety of objectives.

The PAQ has six major divisions, comprising 189 behavioural items required for the assessment of job performance and seven supplementary items related to monetary compensation:

·     information input (where and how does one get information on the jobs to perform) (35 items)

·     mental process (information processing and decision-making in performing the job) (14 items)

·     work output (physical work done, tools and devices used) (50 items)

·     interpersonal relationships (36 items)

·     work situation and job context (physical/social contexts) (18 items)

·     other job characteristics (work schedules, job demands) (36 items).

The Job Components Inventory Mark II contains seven sections. The introductory section deals with the details of the organization, job descriptions and biographical details of the job holder. Other sections are as follows:

·     tools and equipment—uses of over 200 tools and equipment (26 items)

·     physical and perceptual requirements—strength, coordination, selective attention (23 items)

·     mathematical requirements—uses of numbers, trigonometry, practical applications, e.g., work with plans and drawings (127 items)

·     communication requirements—the preparation of letters, use of coding systems, interviewing people (19 items)

·     decision-making and responsibility—decisions about methods, order of work, standards and related issues (10 items)

·     job conditions and perceived job characteristics.

The profile methods have common elements, that is, (1) a comprehensive set of job factors used to select the range of work, (2) a rating scale that permits the evaluation of job demands, and (3) the weighing of job characteristics based on organizational structure and sociotechnical requirements. Les profils des postes, another task profile instrument, developed in the Renault Organization (RNUR 1976), contains a table of entries of variables representing working conditions, and provides respondents with a five-point scale on which they can select the value of a variable that ranges from very satisfactory to very poor by way of registering standardized responses. The variables cover (1) the design of the workstation, (2) the physical environment, (3) the physical load factors, (4) nervous tension, (5) job autonomy, (6) relations,  (7) repetitiveness and (8) contents of work.

The AET (Ergonomic Job Analysis) (Rohmert and Landau 1985), was developed based on the stress-strain concept. Each of the 216 items of the AET are coded: one code defines the stressors, indicating whether a work element does or does not qualify as a stressor; other codes define the degree of stress associated with a job; and yet others describe the duration and frequency of stress during the work shift.

The AET consists of three parts:

·     Part A. The Man-at-Work system (143 items) includes the work objects, tools and equipment, and work environment constituting the physical, organizational, social and economic conditions of work.

·     Part B. The Task analysis (31 items) classified according to both the different kinds of work object, such as material and abstract objects, and worker-related tasks.

·     Part C. The Work Demand analysis (42 items) comprises the elements of perception, decision and response/activity. (The AET supplement, H-AET, covers body postures and movements in industrial assembling activities).

Broadly speaking, the checklists adopt one of two approaches, (1) the job-oriented approach (e.g., the AET, Les profils des postes) and (2) the worker-oriented approach (e.g., the PAQ). The task inventories and profiles offer subtle comparison of complex tasks and occupational profiling of jobs and determine the aspects of work which are considered a priori as inevitable factors in improving working conditions. The emphasis of the PAQ is on classifying job families or clusters (Fleishman and Quaintence 1984; Mossholder and Arvey 1984; Carter and Biersner 1987), inferring job component validity and job stress (Jeanneret 1980; Shaw and Riskind 1983). From the medical point of view, both the AET and the profile methods allow comparisons of constraints and aptitudes when required (Wagner 1985). The Nordic questionnaire is an illustrative presentation of ergonomic workplace analysis (Ahonen, Launis and Kuorinka 1989), which covers the following aspects:

·     work space

·     general physical activity

·     lifting activity

·     work postures and movements

·     accident risk

·     job content

·     job restrictiveness

·     worker’s communication and personal contacts

·     decision-making

·     repetitiveness of the work

·     attentiveness

·     lighting conditions

·     thermal environment

·     noise.

Among the shortcomings of the general-purpose checklist format employed in ergonomic job analysis are the following:

·     With some exceptions (e.g., the AET, and the Nordic questionnaire), there is a general lack of ergonomics norms and protocols of evaluation with respect to the different aspects of work and environment.

·     There are dissimilarities in the overall construction of the checklists as regards means of determining the characteristics of working conditions, the quotation form, criteria and methods of testing.

·     The evaluation of physical workload, work postures and work methods is limited on account of lack of precision in the analysis of work operations, with reference to the scale of relative levels of stress.

·     The principal criteria of assessment of the worker’s mental load are the degree of complexity of the task, the attention required by the task and the execution of mental skills. The existing checklists refer less to underuse of abstract thought mechanisms than to overuse of concrete thought mechanisms.

·     In most checklists, methods of analysis attach major importance to the job as a position as opposed to the analysis of work, worker-machine compatibility, and so forth. The psycho-sociological determinants, which are fundamentally subjective and contingent, are less emphasized in the ergonomics checklists.

A systematically constructed checklist obliges us to investigate the factors of work conditions which are visible or easy to modify, and permits us to engage in a social dialogue between employers, job holders and others concerned. One should exercise a degree of caution towards the illusion of simplicity and efficiency of the checklists, and towards their quantifying and technical approaches as well. Versatility in a checklist or questionnaire can be achieved by including specific modules to suit specific objectives. Therefore, the choice of variables is very much linked to the purpose for which the work systems are to be analysed and this determines the general approach for construction of a user-friendly checklist.

The suggested “Ergonomics Checklist” may be adopted for various applications. Data collection and computerized processing of the checklist data are relatively straightforward, by responding to the primary and secondary statements (q.v.). The Summary Evaluation Sheet may be used for profiling and clustering of a selected group of items, which may form the basis for decisions on work systems. The process of analysis is often time-consuming and the users of these instruments must have a sound training in ergonomics both theoretical and practical, in the evaluation of work systems.


A broad guideline for a modular-structured work systems checklist is suggested here, covering five major aspects (mechanistic, biological, perceptual/motor, technical and psychosocial). Weighting of the modules varies with the nature of the job(s) to be analysed, the specific features of the country or population under study, organizational priorities and the intended use of the results of the analysis. Respondents mark the "primary statement" as Yes/No. "Yes" answers indicate the apparent absence of a problem, although the advisability of further careful scrutiny should not be ruled out. "No" answers indicate a need for an ergonomics evaluation and improvement. Responses to "secondary statements" are indicated by a single digit on the severity of agreement/disagreement scale illustrated below


Do not know or not applicable


Strongly disagree




Neither agree nor disagree




Strongly agree

A. Organization, worker and the task

Your answers/ratings

The checklist designer may provide a sample drawing/photograph of work and workplace under study


Description of organization and functions.







Worker characteristics: A brief account of the work group.







Task description: List activities and materials in use. Give some indication of the work hazards.






B. Mechanistic aspect

Your answers/ratings


Job Specialization



Tasks/work patterns are simple and uncomplicated.




If No, rate the following:

(Enter 0-5)



Job assignment is specific to the operative.




Tools and methods of work are specialized to the purpose of the job.




Production volume and quality of work.




Job holder performs multiple tasks.



Skill Requirement



Job requires simple motor act.




If No, rate the following:

(Enter 0-5)



Job requires knowledge and skilful ability.




Job demands training for skill acquisition.




Worker makes frequent mistakes at work.




Job demands frequent rotation, as directed.




Work operation is machine paced/assisted by automation.


Remarks and suggestions for improvement. Items 4 to 5.5:






O Analyst’s rating O Worker’s rating

C. Biological aspect

Your answers/ratings


General Physical Activity



Physical activity is entirely determined and regulated by the worker.




If No, rate the following:

(Enter 0-5)



Worker maintains target-oriented pace.




Job implies frequently repeated movements.




Cardiorespiratory demand of the job:

sedentary/light/moderate/heavy/ extremely heavy




(What are the heavy work elements?):










(Enter 0-5)



Job demands high muscular strength exertion.




Job (operation of handle, steering wheel, pedal brake) is predominantly static work.




Job requires fixed working position (sitting or standing).



Manual Materials Handling (MMH)

Nature of objects handled: animate/inanimate, size and shape.




Job requires minimal MMH activity.




If No, specify the work:




Mode of work:

(circle one)







(Specify repetition cycle):





Load weight (kg):

(circle one)



5-10, 10-20, 20-30, 30-40, >>40.




Subject-load horizontal distance (cm):

(circle one)



<25, 25-40, 40-55, 55-70, >70.




Subject-load height:

(circle one)



ground, knee, waist, chest, shoulder level.





(Enter 0-5)



Clothing restricts MMH tasks.




Task situation is free from risk of bodily injury.




If No, rate the following:

(Enter 0-5)



Task can be modified to reduce the load to be handled.




Materials can be packed in standard sizes.




Size/position of handles on objects may be improved.




Workers do not adopt safer methods of load handling.




Mechanical aids may reduce bodily strains.




List each item if hoists or other handling aids are available.


Suggestions for improvement, Items 6 to 8.5:







Workplace/Workspace Design

Workplace may be diagrammatically illustrated, showing human reach and clearance:








Workplace is compatible with human dimensions.




If No, rate the following:

(Enter 0-5)



Work distance is away from normal reach in the horizontal or vertical plane (>60 cm).




Height of work desk/equipment is fixed or minimally adjustable.




No space for subsidiary operations (e.g., inspection and maintenance).




Workstations have obstacles, protruding parts or sharp edges.




Work surface floors are slippery, uneven, cluttered or unstable.




Seating arrangement is adequate  (e.g., comfortable chair, good postural support).




If No, the causes are:

(Enter 0-5)



Seat dimensions (e.g., seat height, back rest) mismatch with human dimensions.




Minimum adjustability of seat.




Workseat provides no hold/support (e.g., by means of vertical edges/extra stiff covering) to work with the machinery.




Absence of vibration damping mechanism in the workseat.




Sufficient auxiliary support is available for safety at the workplace.




If No, mention the following:

(Enter 0-5)



Non-availability of storage space for tools, personal articles.




Doorways, entrance/exit routes, or corridors are restricted.




Design mismatch of handles, ladders, staircases, handrails.




Handholds and footholds demand awkward position of limbs.




Supports are unrecognizable by their place, form or construction




Limited use of gloves/footwear to work and operate equipment controls.


Suggestions for improvement, Items 9 to 11.6:







Work Posture



Job allows a relaxed work posture.




If No, rate the following:

(Enter 0-5)



Working with arms above shoulder and/or away from the body.




Hyperextension of wrist and demand of high strength.




Neck/shoulder are not maintained at an angle of about 15°.




Back bent and twisted.




Hips and legs are not well supported in seated position.




One-sided and unsymmetrical movement of the body.




Mention reasons of forced posture: (1) machine location (2) seat design, (3) equipment handling, (4) workplace/workspace




Specify OWAS code. (For a detailed description of the OWAS method refer to Karhu et al. 1981.)



Suggestions for improvement, Items 12 to 12.7:







Work Environment

(Give measurements where possible)


[Identify noise sources, type and duration of exposure; refer to ILO 1984 code].



Noise level is below the maximum sound level recommended.

(Use the following table.)



Work requiring no verbal communication

Work requiring verbal communication

Work requiring concentration


under 60 dBA

under 50 dBA

under 45 dBA


60-70 dBA

50-60 dBA

45-55 dBA


70-80 dBA

60-70 dBA

55-65 dBA


80-90 dBA

70-80 dBA

65-75 dBA


over 90 dBA

over 80 dBA

over 75 dBA

Source: Ahonen et al. 1989.



Give your agreement/disagreement score (0-5)




Damaging noises are suppressed at the source.




If No, rate countermeasures:

(Enter 0-5)



No effective sound isolation present.




Noise emergency measures are not taken (e.g., restriction of working time, use of personal ear defenders/protectors).








Specify climatic condition.




Temperature  ____

Humidity ____

Radiant Temperature ____

Draughts ____




Climate is comfortable.




If No, rate the following:

(Enter 0-5)



Temperature sensation (circle one):

cool/slightly cool/neutral/warm/very hot




Ventilation devices (e.g., fans, windows, air conditioners) are not adequate.




Non-execution of regulatory measures on exposure limits (if available, please elaborate).




Workers do not wear heat protective/assistive clothing.




Drinking fountains of cool water are not available nearby.








Workplace/machine(s) are sufficiently illuminated at all times.




If No, rate the following:

(Enter 0-5)



Illumination is sufficiently intense.




Illumination of work area is adequately uniform.




Flicker phenomena are minimal or absent.




Shadow formation is nonproblematical.




Annoying reflected glares are minimal or absent.




Colour dynamics (visual accentuation, colour warmth) are adequate.








Environment is free from excessive dust, fumes and toxic substances.




If No, rate the following:

(Enter 0-5)



Ineffective ventilation and exhaust systems to carryoff fumes, smoke and dirt.




Lack of protection measures against emergencyrelease and contact with dangerous/toxic substances.

List the chemical toxicants:





Monitoring of the workplace for chemical toxicants is not regular.




Non-availability of personal protective measures (e.g., gloves, shoes, mask, apron).








Workers are effectively protected against radiation exposure.




If No, mention the exposures

(see ISSA checklist, Ergonomics):

(Enter 0-5)



UV radiation (200 nm - 400 nm).




IR radiation (780 nm - 100 µm).




Radioactivity/x-ray radiation (<200 nm).




Microwaves (1 mm - 1 m).




5 Lasers (300 nm - 1.4 µm).




Others (mention):













Machine can be operated without vibration transmission to the operator’s body.




If No, rate the following:

(Enter 0-5)



Vibration is transmitted to the whole body via the feet.




Vibration transmission occurs through the seat (e.g., mobile machines that are driven with operator seated).




Vibration is transmitted through the hand-arm system (e.g., power-driven handtools, machines driven when operator is walking).




Prolonged exposure to continuous/repetitive source of vibration.




Vibration sources cannot be isolated or eliminated.




Identify the sources of vibration.


Comments and suggestions, items 13 to 20:








Work Time Schedule


Indicate work time: work hours/day/week/year, including seasonal work and shift system.



Pressure of work time is minimum.




If No, rate the following:

(Enter 0-5)



Job requires night work.




Job involves overtime/extra work time.




Specify average duration:





Heavy tasks are unevenly distributed throughout the shift.




People work at a predetermined pace/time limit.




Fatigue allowances/work-rest patterns are not sufficientlyincorporated (use cardio-respiratory criteria on work severity).


Comments and suggestions, items 21 to 21.5:






O Analyst’s rating O Worker’s rating


Perceptual/motor aspect

Your answers/ratings





Visual displays (gauges, meters, warning signals) are easy to read.




If No, rate the difficulties:

(Enter 0-5)



Insufficient lighting (refer to item No. 17).




Awkward head/eye positioning for visual line.




Display style of numerals/numerical progression creates confusion and causes reading errors.




Digital displays are not available for accurate reading.




Large visual distance for reading precision.




Displayed information is not easily understood.




Displayed information changes before an action can be taken.




Emergency signals/impulses are easily recognizable.




If No, assess the reasons:




Signals (visual/auditory) do not conform to the work process.




Flashing signals are out of visual field.




Auditory display signals are not audible.




Groupings of the display features are logical.




If No, rate the following:




Displays are not distinguished by form, position, colour or tone.




Frequently used and critical displays are removed from the central line of vision.






Controls (e.g., switches, knobs, cranes, driving wheels, pedals) are easy to handle.




If No, the causes are:

(Enter 0-5)



Hand/foot control positions are awkward.




Handedness of the controls/tools is incorrect.




Dimensions of controls do not match the operating body part.




Controls require high actuating force.




Controls require high precision and speed.




Controls are not shape-coded for good grip.




Controls are not colour/symbol-coded for identification.




Controls cause unpleasant feeling (warmth, cold, vibration).




Displays and controls (combined) are compatible with easyand comfortable human reactions.




If No, rate the following:

(Enter 0-5)



Placements are not sufficiently close to each other.




Display/controls are not sequentially arranged for functions/frequency of use.




Display/control operations are successive, without enough time span to complete operation (this creates sensory overloading).




Disharmony in movement direction of display/control (e.g., leftward control movement does not give leftward unit movement).


Comments and suggestions, items 22 to 26.4:






O Analyst’s rating O Worker’s rating

E. Technical aspect

Your answers/ratings





Machine (e.g., conveyer trolley, lifting truck, machine tool) is easy to drive and work with.




If No, rate the following:

(Enter 0-5)



Machine is unstable in operation.




Poor maintenance of the machinery.




Driving speed of the machine cannot be regulated.




Steering wheels/handles are operated, from standing position.




Operating mechanisms hamper body movements in the workspace.




Risk of injury due to lack of machine guarding.




Machinery is not equipped with warning signals.




Machine is poorly equipped for vibration damping.




Machine noise levels are above legal limits (refer to items No. 13 and 14).




Poor visibility of machine parts and adjacent area (refer to items No. 17 and 22).



Small Tools/Implements



Tools/implements provided to the operatives are comfortable to work with.




If No, rate the following:

(Enter 0-5)



Tool/implement has no carrying strap/back frame.




Tool cannot be used with alternate hands.




Heavy weight of the tool causes hyperextension of the wrist.




Form and position of the handle are not designed for convenient grip.




Power-driven tool is not designed for two-hand operation.




Sharp edges/ridges of the tool/equipment can cause injury.




Harnesses (gloves, etc.) are not regularly used in operating vibrating tool.




Noise levels of power-driven tool are above acceptable limits (refer to item No. 13).


Suggestions for improvement, items 27 to 28.8:







Work Safety



Machine safety measures are adequate to prevent accidents and health hazards.




If No, rate the following:

(Enter 0-5)



Machine accessories cannot be fastened and removed easily.




Dangerous points, moving parts and electrical installations are not adequately guarded.




Direct/indirect contact of body parts with machinery can cause hazards.




Difficulty in inspection and maintenance of the machine.




No clear instructions available for machine operation, maintenance and safety.


Suggestions for improvement, items 29 to 29. 5:






O Analyst’s rating O Worker’s rating

F. Psychosocial aspect

Your answers/ratings


Job Autonomy



Job allows autonomy (e.g., freedom regarding method of work, performance conditions, time schedule, quality control).




If No, the possible causes are:

(Enter 0-5)



No discretion on the starting/finishing times of the job.




No organizational support as regards calling for assistance at work.




Insufficient number of people for the task (teamwork).




Rigidity in work methods and conditions.



Job Feedback (Intrinsic and Extrinsic)



Job allows direct feedback of information as to the quality and quantity of one’s performance.




If No, the reasons are:

(Enter 0-5)



No participative role in task information and decision making.




Constraints of social contact due to physical barriers.




Communication difficulty due to high noise level.




Increased attentional demand in machine pacing.




Other people (managers, co-workers) inform the worker as to his/her effectiveness of job performance.



Task Variety/Clarity



Job has a variety of tasks and calls for spontaneity on the part of the worker.




If No, rate the following:

(Enter 0-5)



Job roles and goals are ambiguous.




Job restrictiveness is imposed by a machine, process or work group.




Worker-machine relation arouses conflict as to behaviour to be evinced by operator.




Restricted level of stimulation (e.g., unchanging visual and auditory environment).




High level of boredom on the job.




Limited scope for job enlargement.



Task Identity/Significance



Worker is given a batch of tasks and arranges his or her own schedule to complete the work (e.g., one plans and executes the job and inspects and manages the products).



Give your agreement/disagreement score (0-5)




Job is significant in the organization. It provides acknowledgement and recognition from others.



(Give your agreement/disagreement score)



Mental Overload/Underload



Job consists of tasks for which clear communication and unambiguous information support systems are available.




If No, rate the following:

(Enter 0-5)



Information supplied in connection with the job is extensive.




Information handling under pressure is required (e.g., emergency manoeuvering in process control).




High information-handling workload (e.g., difficult positioning task-no special motivation required).




Occasional attention is directed to information other than that needed for the actual task.




Task consists of repetitive simple motor act, with superficial attention needed.




Tools/equipment are not pre-positioned to avoid mental delay.




Multiple choices are required in decision making and judging risks.


(Comments and suggestions, items 30 to 35.7)







Training and Promotion



Job has opportunities for associated growth in competence and task accomplishment.




If No, the possible causes are:

(Enter 0-5)



No opportunity for advancement to higher levels.




No periodic training for operators, specific to jobs.




Training programs/tools are not easy to learn and use.




No incentive pay schemes.



Organizational Commitment



Defined commitment towards organizational effectiveness, and physical, mental and social well-being.




Assess the degree to which the following are made available:

(Enter 0-5)



Organizational role in individual role conflicts and ambiguities.




Medical/administrative services for preventive intervention in the case of work hazards.




Promotional measures to control absenteeism in work group.




Effective safety regulations.




Labour inspection and monitoring of better work practices.




Follow-up action for accident/injury management.


(Now go to the Summary Evaluation Sheet)


A. Brief Description of Organization, Worker Characteristics and Task Description









Severity Agreement





No. of rated Items







Relative Severity (%)

Item No(s). for Immediate Intervention

B. Mechanistic

I. Job Specialization











II. Skill Requirement










C. Biological

III. General Physical Activity











IV. Manual Materials Handling











V. Workplace/Workplace Design











VI. Work Posture











VII. Work Environment











VIII. Work Time Schedule










D. Perceptual/motor

IX. Displays











X. Controls










E. Technical

XI. Machinery











XII. Small Tools/Implements











XIII. Work Safety










F. Psychosocial

XIV. Job Autonomy











XV. Job Feedback



XVI. Task Variety/Clarity



XVII. Task Identity/Significance



XVIII. Mental Overload/Underload



XIX. Training and Promotion



XX. Organizational Commitment



Overall Assessment

Severity Agreement of the Modules





















Work Analyst:


Melchiorre Masali*

*This article is adapted from the 3rd edition of the Encyclopaedia of Occupational Health  and Safety.

Anthropometry is a fundamental branch of physical anthropology. It represents the quantitative aspect. A wide system of theories and practice is devoted to defining methods and variables to relate the aims in the different fields of application. In the fields of occupational health, safety and ergonomics anthropometric systems are mainly concerned with body build, composition and constitution, and with the dimensions of the human body’s interrelation to workplace dimensions, machines, the industrial environment and clothing.

Anthropometric variables

An anthropometric variable is a measurable characteristic of the body that can be defined, standardized and referred to a unit of measurement. Linear variables are generally defined by landmarks that can be precisely traced on the body. Landmarks are generally of two types: skeletal-anatomical, which maybe found and traced by feeling bony prominences through the skin, and virtual landmarks that are simply found as maximum or minimum distances using the branches of a caliper.

Anthropometric variables have both genetic and environmental components and may be used to define individual and population variability. The choice of variables must be related to the specific research purpose and standardized with other research in the same field, as the number of variables described in the literature is extremely large, up to 2,200 having been described for the human body.

Anthropometric variables are mainly linear measures, such as heights, distances from landmarks with subject standing or seated in standardized posture; diameters, such as distances between bilateral landmarks; lengths, such as distances between two different landmarks; curved measures, namely arcs, such as distances on the body surface between two landmarks; and girths, such as closed all-around measures on body surfaces, generally positioned at at least one landmark or at a defined height.

Other variables may require special methods and instruments. For instance skinfold thickness is measured by means of special constant pressure calipers. Volumes are measured by calculation or by immersion in water. To obtain full information on body surface characteristics, a computer matrix of surface points may be plotted using biostereometric techniques.


Although sophisticated anthropometric instruments have been described and used with a view to automated data collection, basic anthropometric instruments are quite simple and easy to use. Much care must be taken to avoid common errors resulting from misinterpretation of landmarks and incorrect postures of subjects.

The standard anthropometric instrument is the anthropometer—a rigid rod 2 metres long, with two counter-reading scales, with which vertical body dimensions, such as heights of landmarks from floor or seat, and transverse dimensions, such as diameters, can be taken.

Commonly the rod can be split into 3 or 4 sections which fit into one another. A sliding branch with a straight or curved claw makes it possible to measure distances from the floor for heights, or from a fixed branch for diameters. More elaborate anthropometers have a single scale for heights and diameters to avoid scale errors, or are fitted with digital mechanical or electronic reading devices (figure 29.7).

Figure 29.7 An anthropometer

A stadiometer is a fixed anthropometer, generally used only for stature and frequently associated with a weight beam scale.

For transverse diameters a series of calipers may be used: the pelvimeter for measures up to 600 mm and the cephalometer up to 300 mm. The latter is particularly suitable for head measurements when used together with a sliding compass (figure 29.8).

Figure 29.8 Grip strength of pliers jaws exerted by male and female users  as a function of handle separation

The foot-board is used for measuring the feet and the head-board provides cartesian co-ordinates of the head when oriented in the “Frankfort plane” (a horizontal plane passing through porion and orbitale landmarks of the head).The hand may be measured with a caliper, or with a special device composed of five sliding rulers.

Skinfold thickness is measured with a constant-pressure skinfold caliper generally with a pressure of 9.81 x 104 Pa (the pressure imposed by a weight of 10 g on an area of 1 mm2).

For arcs and girths a narrow, flexible steel tape with flat section is used. Self-straightening steel tapes must be avoided.

Systems of variables

A system of anthropometric variables is a coherent set of body measurements to solve some specific problem.

In the field of ergonomics and safety the main problem is fitting equipment and work space to humans and tailoring clothes to the right size.

Equipment and work space require mainly linear measures of limbs and body segments that can easily be calculated from landmark heights and diameters, whereas tailoring sizes are based mainly on arcs, girths and flexible tape lengths. Both systems may be combined according to need.

In any case it is absolutely necessary to have a precise space reference for each measurement. The landmarks must therefore be linked by heights and diameters and every arc or girth must have a defined landmark reference. Heights and slopes must be indicated.

In a particular survey the number of variables has to be limited to the minimum so as to avoid undue stress on the subject and operator.

A basic set of variables for work space has been reduced to 33 measured variables (figure 29.9) plus 20 derived by simple calculation. For a general purpose military survey, Hertzberg and co-workers use 146 variables. For clothes and general biological purposes the Italian Fashion Board (Ente Italiano della Moda) uses a set of 32 general purpose variables and 28 technical ones. The German norm (DIN 61 516) of control body dimensions for clothes includes 12 variables. The recommendation of the International Organization for Standardization (ISO) for anthropometry includes a core list of 36 variables (see table 29.1). The International Data on Anthropometry tables published by the ILO list 19 body dimensions for the populations of 20 different regions of the world (Jürgens, Aune and Pieper 1990).

Figure 29.9 Basic set of anthropometric variables

Table 29.1 Basic anthropometric core list

1.1     Forward reach (to hand grip with subject standing upright against a wall)

1.2     Stature (vertical distance from floor to head vertex)

1.3     Eye height (from floor to inner eye corner)

1.4     Shoulder height (from floor to acromion)

1.5     Elbow height (from floor to radial depression of elbow)

1.6     Crotch height (from floor to pubic bone)

1.7     Finger tip height (from floor to grip axis of fist)

1.8     Shoulder breadth (biacromial diameter)

1.9     Hip breadth, standing (the maximum distance across hips)

2.1     Sitting height (from seat to head vertex)

2.2     Eye height, sitting (from seat to inner corner of the eye)

2.3     Shoulder height, sitting (from seat to acromion)

2.4     Elbow height, sitting (from seat to lowest point of bent elbow)

2.5     Knee height (from foot-rest to the upper surface of thigh)

2.6     Lower leg length (height of sitting surface)

2.7     Forearm-hand length (from back of bent elbow to grip axis)

2.8     Body depth, sitting (seat depth)

2.9     Buttock-knee length (from knee-cap to rearmost point of buttock)

2.10     Elbow to elbow breadth (distance between lateral surface of the elbows)

2.11     Hip breadth, sitting (seat breadth)

3.1     Index finger breadth, proximal (at the joint between medial and proximal phalanges)

3.2     Index finger breadth, distal (at the joint between distal and medial phalanges)

3.3     Index finger length

3.4     Hand length (from tip of middle finger to styloid)

3.5     Hand breadth (at metacarpals)

3.6     Wrist circumference

4.1     Foot breadth

4.2     Foot length

5.1     Heat circumference (at glabella)

5.2     Sagittal arc (from glabella to inion)

5.3     Head length (from glabella to opisthocranion)

5.4     Head breadth (maximum above the ear)

5.5     Bitragion arc (over the head between the ears)

6.1     Waist circumference (at the umbilicus)

6.2     Tibial height (from the floor to the highest point on the antero-medial margin of the glenoid of the tibia)

6.3     Cervical height sitting (to the tip of the spinous process of the 7th cervical vertebra).

Source: Adapted from ISO/DP 7250 1980).

Precision and errors

Precision of living body dimensions must be considered in a stochastic manner, because the human body is highly unpredictable, both as a static and as a dynamic structure.

A single individual may grow or change in muscularity and fatness; undergo skeletal changes as a consequence of ageing, disease or accidents; or modify behaviour or posture. Different subjects differ by proportions, not only by general dimensions. Tall stature subjects are not mere enlargements of short ones; constitutional types and somatotypes probably vary more than general dimensions.

The use of mannequins, particularly those representing the standard 5th, 50th and 95th percentiles for fitting trials may be highly misleading, if body variations in body proportions are not taken into consideration.

Errors result from misinterpretation of landmarks and incorrect use of instruments (personal error), imprecise or inexact instruments (instrumental error), or changes in subject posture (subject error—this latter may be due to difficulties of communication if the cultural or linguistic background of the subject differs from that of the operator).

Statistical treatment

Anthropometric data must be treated by statistical procedures, mainly in the field of inference methods applying univariate (mean, mode, percentiles, histograms, variance analysis, etc.), bivariate (correlation, regression) and multivariate (multiple correlation and regression, factor analysis, etc.) methods. Various graphical methods based on statistical applications have been devised to classify human types (anthropometrograms, morphosomatograms).

Sampling and survey

As anthropometric data cannot be collected for the whole population (except in the rare case of a particularly small population), sampling is generally necessary. A basically random sample should be the starting point of any anthropometric survey. To keep the number of measured subjects to a reasonable level it is generally necessary to have recourse to multiple-stage stratified sampling. This allows the most homogeneous subdivision of the population into a number of classes or strata.

The population may be subdivided by sex, age group, geographical area, social variables, physical activity and so on.

Survey forms have to be designed keeping in mind both measuring procedure and data treatment. An accurate ergonomic study of the measuring procedure should be made in order to reduce the operator’s fatigue and possible errors. For this reason variables must be grouped according to the instrument used and ordered in sequence so as to reduce the number of body flexions the operator has to make.

To reduce the effect of personal error, the survey should be carried out by one operator. If more than one operator has to be used, training is necessary to assure replicability of measurements.

Population anthropometrics

Disregarding the highly criticized concept of “race”, human populations are nevertheless highly variable in size of individuals and in size distribution. Generally human populations are not strictly Mendelian; they are commonly the result of admixture. Sometimes two or more populations, with different origins and adaptation, live together in the same area without interbreeding. This complicates the theoretical distribution of traits. From the anthropometric viewpoint, sexes are different populations. Populations of employees may not correspond exactly to the biological population of the same area as a consequence of possible aptitudinal selection or auto-selection due to job choice.

Populations from different areas may differ as a consequence of different adaptation conditions or biological and genetic structures.

When close fitting is important a survey on a random sample is necessary.

Fitting trials and regulation

The adaptation of work space or equipment to the user may depend not only on the bodily dimensions, but also on such variables as tolerance of discomfort and nature of activities, clothing, tools and environmental conditions. A combination of a check list of relevant factors, a simulator and a series of fitting trials using a sample of subjects chosen to represent the range of body sizes of the expected user population can be used.

The aim is to find tolerance ranges for all subjects. If the ranges overlap it is possible to select a narrower final range which is not outside the tolerance limits of any subject. If there is no overlap it will be necessary to make the structure adjustable or to provide it in different sizes. If more than two dimensions are adjustable a subject may not be able to decide which of the possible adjustments will fit him best.

Adjustability can be a complicated matter, especially when uncomfortable postures result in fatigue. Precise indications must therefore be given to the user who frequently knows little or nothing about his own anthropometric characteristics. In general an accurate design should reduce the need for adjustment to the minimum. In any case it should constantly be kept in mind what is involved is anthropometrics, not merely engineering.

Dynamic anthropometrics

Static anthropometrics may give wide information about movement if an adequate set of variables has been chosen. Nevertheless when movements are complicated and a close fit with the industrial environment is desirable, as in most user-machine and human-vehicle interfaces, an exact survey of postures and movements is necessary. This may be done with suitable mock-ups that allow tracing of reach lines or by photography. In this case a camera fitted with telephoto lens and an anthropometric rod, placed in the sagittal plane of the subject, allows standardized photographs with little distortion of image. Small labels on subjects’ articulations make exact tracing of movements possible.

Another way of studying movements is to formalize postural changes according to a series of horizontal and vertical planes passing through the articulations. Again, using computerized human models with computer-aided design (CAD) systems is a feasible way to include dynamic anthropometrics in ergonomic workplace design.


Juhani Smolander and Veikko Louhevaara

Muscular Work in Occupational Activities

In industrialized countries around 20% of workers are still employed in jobs requiring muscular effort (Rutenfranz et al. 1990). The number of conventional heavy physical jobs has decreased, but, on the other hand, many jobs have become more static, asymmetrical and stationary. In developing countries, muscular work of all forms is still very common.

Muscular work in occupational activities can be roughly divided into four groups: heavy dynamic muscle work, manual materials handling, static work and repetitive work. Heavy dynamic work tasks are found in forestry, agriculture and the construction industry, for example. Materials handling is common, for example, in nursing, transportation and warehousing, while static loads exist in office work, the electronics industry and in repair and maintenance tasks. Repetitive work tasks can be found in the food and wood-processing industries, for example.

It is important to note that manual materials handling and repetitive work are basically either dynamic or static muscular work, or a combination of these two.

Physiology of Muscular Work

Dynamic muscular work

In dynamic work, active skeletal muscles contract and relax rhythmically. The blood flow to the muscles is increased to match metabolic needs. The increased blood flow is achieved through increased pumping of the heart (cardiac output), decreased blood flow to inactive areas, such as kidneys and liver, and increased number of open blood vessels in the working musculature. Heart rate, blood pressure, and oxygen extraction in the muscles increase linearly in relation to working intensity. Also, pulmonary ventilation is heightened owing to deeper breathing and increased breathing frequency. The purpose of activating the whole cardio-respiratory system is to enhance oxygen delivery to the active muscles. The level of oxygen consumption measured during heavy dynamic muscle work indicates the intensity of the work. The maximum oxygen consumption (VO2max) indicates the person’s maximum capacity for aerobic work. Oxygen consumption values can be translated to energy expenditure (1 litre of oxygen consumption per minute corresponds to approximately 5 kcal/min or 21 kJ/min).

In the case of dynamic work, when the active muscle mass is smaller (as in the arms), maximum working capacity and peak oxygen consumption are smaller than in dynamic work with large muscles. At the same external work output, dynamic work with small muscles elicits higher cardio-respiratory responses (e.g., heart rate, blood pressure) than work with large muscles (figure 29.10).

Figure 29.10 Static versus dynamic work

Static muscle work

In static work, muscle contraction does not produce visible movement, as, for example, in a limb. Static work increases the pressure inside the muscle, which together with the mechanical compression occludes blood circulation partially or totally. The delivery of nutrients and oxygen to the muscle and the removal of metabolic end-products from the muscle are hampered. Thus, in static work, muscles become fatigued more easily than in dynamic work.

The most prominent circulatory feature of static work is a rise in blood pressure. Heart rate and cardiac output do not change much. Above a certain intensity of effort, blood pressure increases in direct relation to the intensity and the duration of the effort. Furthermore, at the same relative intensity of effort, static work with large muscle groups produces a greater blood pressure response than does work with smaller muscles. (See figure 29.10 .)

In principle, the regulation of ventilation and circulation in static work is similar to that in dynamic work, but the metabolic signals from the muscles are stronger, and induce a different response pattern.

Consequences of Muscular Overload in Occupational Activities

The degree of physical strain a worker experiences in muscular work depends on the size of the working muscle mass, the type of muscular contractions (static, dynamic), the intensity of contractions, and individual characteristics.

When muscular workload does not exceed the worker’s physical capacities, the body will adapt to the load and recovery is quick when the work is stopped. If the muscular load is too high, fatigue will ensue, working capacity is reduced, and recovery slows down. Peak loads or prolonged overload may result in organ damage (in the form of occupational or work-related diseases). On the other hand, muscular work of certain intensity, frequency, and duration may also result in training effects, as, on the other hand, excessively low muscular demands may cause detraining effects. These relationships are represented by the so-called expanded stress-strain concept developed by Rohmert (1984) (figure 29.11).

Figure 29.11 The expanded stress-strain model modified from Rohmert (1984)

In general, there is little epidemiological evidence that muscular overload is a risk factor for diseases. However, poor health, disability and subjective overload at work converge in physically demanding jobs, especially with older workers. Furthermore, many risk factors for work-related musculoskeletal diseases are connected to different aspects of muscular workload, such as the exertion of strength, poor working postures, lifting and sudden peak loads.

One of the aims of ergonomics has been to determine acceptable limits for muscular workloads which could be applied for the prevention of fatigue and disorders. Whereas the prevention of chronic effects is the focus of epidemiology, work physiology deals mostly with short-term effects, that is, fatigue in work tasks or during a work day.

Acceptable Workload in Heavy Dynamic Muscular Work

The assessment of acceptable workload in dynamic work tasks has traditionally been based on measurements of oxygen consumption (or, correspondingly, energy expenditure). Oxygen consumption can be measured with relative ease in the field with portable devices (e.g., Douglas bag, Max Planck respirometer, Oxylog, Cosmed), or it can be estimated from heart rate recordings, which can be made reliably at the workplace, for example, with the SportTester device. The use of heart rate in the estimation of oxygen consumption requires that it be individually calibrated against measured oxygen consumption in a standard work mode in the laboratory, i.e., the investigator must know the oxygen consumption of the individual subject at a given heart rate. Heart rate recordings should be treated with caution because they are also affected by such factors as physical fitness, environmental temperature, psychological factors and size of active muscle mass. Thus, heart rate measurements can lead to overestimates of oxygen consumption in the same way that oxygen consumption values can give rise to underestimates of global physiological strain by reflecting only energy requirements.

Relative aerobic strain (RAS) is defined as the fraction (expressed as a percentage) of a worker’s oxygen consumption measured on the job relative to his or her VO2max measured in the laboratory. If only heart rate measurements are available, a close approximation to RAS can be made by calculating a value for percentage heart rate range (% HR range) with the so-called Karvonen formula as in figure 29.12 .

Figure 29.12 Analysis of acceptable workloads

VO2max is usually measured on a bicycle ergometer or treadmill, for which the mechanical efficiency is high (20-25%). When the active muscle mass is smaller or the static component is higher, VO2max and mechanical efficiency will be smaller than in the case of exercise with large muscle groups. For example, it has been found that in the sorting of postal parcels the VO2max of workers was only 65% of the maximum measured on a bicycle ergometer, and the mechanical efficiency of the task was less than 1%. When guidelines are based on oxygen consumption, the test mode in the maximal test should be as close as possible to the real task. This goal, however, is difficult to achieve.

According to Åstrand’s (1960) classical study, RAS should not exceed 50% during an eight-hour working day. In her experiments, at a 50% workload, body weight decreased, heart rate did not reach steady state and subjective discomfort increased during the day. She recommended a 50% RAS limit for both men and women. Later on she found that construction workers spontaneously chose an average RAS level of 40% (range 25-55%) during a working day. Several more recent studies have indicated that the acceptable RAS is lower than 50%. Most authors recommend 30-35% as an acceptable RAS level for the entire working day.

Originally, the acceptable RAS levels were developed for pure dynamic muscle work, which rarely occurs in real working life. It may happen that acceptable RAS levels are not exceeded, for example, in a lifting task, but the local load on the back may greatly exceed acceptable levels. Despite its limitations, RAS determination has been widely used in the assessment of physical strain in different jobs.

In addition to the measurement or estimation of oxygen consumption, other useful physiological field methods are also available for the quantification of physical stress or strain in heavy dynamic work. Observational techniques can be used in the estimation of energy expenditure (e.g., with the aid of the Edholm scale) (Edholm 1966). Rating of perceived exertion (RPE) indicates the subjective accumulation of fatigue. New ambulatory blood pressure monitoring systems allow more detailed analyses of circulatory responses.

Acceptable Workload in Manual Materials Handling

Manual materials handling includes such work tasks as lifting, carrying, pushing and pulling of various external loads. Most of the research in this area has focused on low back problems in lifting tasks, especially from the biomechanical point of view.

A RAS level of 20-35% has been recommended for lifting tasks, when the task is compared to an individual maximum oxygen consumption obtained from a bicycle ergometer test.

Recommendations for a maximum permissible heart rate are either absolute or related to the resting heart rate. The absolute values for men and women are 90-112 beats per minute in continuous manual materials handling. These values are about the same as the recommended values for the increase in heart rate above resting levels, that is, 30 to 35 beats per minute. These recommendations are also valid for heavy dynamic muscle work for young and healthy men and women. However, as mentioned previously, heart rate data should be treated with caution, because it is also affected by other factors than muscle work.

The guidelines for acceptable workload for manual materials handling based on biomechanical analyses comprise several factors, such as weight of the load, handling frequency, lifting height, distance of the load from the body and physical characteristics of the person.

In one large-scale field study (Louhevaara, Hakola and Ollila 1990) it was found that healthy male workers could handle postal parcels weighing 4 to 5 kilograms during a shift without any signs of objective or subjective fatigue. Most of the handling occurred below shoulder level, the average handling frequency was less than 8 parcels per minute and the total number of parcels was less than 1,500 per shift. The mean heart rate of the workers was 101 beats per minute and their mean oxygen consumption 1.0 l/min, which corresponded to 31% RAS as related to bicycle maximum.

Observations of working postures and use of force carried out for example according to OWAS method (Karhu, Kansi and Kuorinka 1977), ratings of perceived exertion and ambulatory blood pressure recordings are also suitable methods for stress and strain assessments in manual materials handling. Electromyography can be used to assess local strain responses, for example in arm and back muscles.

Acceptable Workload for Static Muscular Work

Static muscular work is required chiefly in maintaining working postures. The endurance time of static contraction is exponentially dependent on the relative force of contraction. This means, for example, that when the static contraction requires 20% of the maximum force, the endurance time is 5 to 7 minutes, and when the relative force is 50%, the endurance time is about 1 minute.

Older studies indicated that no fatigue will be developed when the relative force is below 15% of the maximum force. However, more recent studies have indicated that the acceptable relative force is specific to the muscle or muscle group, and is 2 to 5% of the maximum static strength. These force limits are, however, difficult to use in practical work situations because they require electromyographic recordings.

For the practitioner, fewer field methods are available for the quantification of strain in static work. Some observational methods (e.g., the OWAS method) exist to analyse the proportion of poor working postures, that is, postures deviating from normal middle positions of the main joints. Blood pressure measurements and ratings of perceived exertion may be useful, whereas heart rate is not so applicable.

Acceptable Workload in Repetitive Work

Repetitive work with small muscle groups resembles static muscle work from the point of view of circulatory and metabolic responses. Typically, in repetitive work muscles contract over 30 times per minute. When the relative force of contraction exceeds 10% of the maximum force, endurance time and muscle force start to decrease. However, there is wide individual variation in endurance times. For example, the endurance time varies between two to fifty minutes when the muscle contracts 90 to 110 times per minute at a relative force level of 10 to 20% (Laurig 1974).

It is very difficult to set any definitive criteria for repetitive work, because even very light levels of work (as with the use of a microcomputer mouse) may cause increases in intramuscular pressure, which may sometimes lead to swelling of muscle fibres, pain and reduction in muscle strength.

Repetitive and static muscle work will cause fatigue and reduced work capacity at very low relative force levels. Therefore, ergonomic interventions should aim to minimize the number of repetitive movements and static contractions as far as possible. Very few field methods are available for strain assessment in repetitive work.

Prevention of Muscular Overload

Relatively little epidemiological evidence exists to show that muscular load is harmful to health. However, work physiological and ergonomic studies indicate that muscular overload results in fatigue (i.e., decrease in work capacity) and may reduce productivity and quality of work.

The prevention of muscular overload may be directed to the work content, the work environment and the worker. The load can be adjusted by technical means, which focus on the work environment, tools, and/or the working methods. The fastest way to regulate muscular workload is to increase the flexibility of working time on an individual basis. This means designing work-rest regimens which take into account the workload and the needs and capacities of the individual worker.

Static and repetitive muscular work should be kept at a minimum. Occasional heavy dynamic work phases may be useful for the maintenance of endurance type physical fitness. Probably, the most useful form of physical activity that can be incorporated into a working day is brisk walking or stair climbing.

Prevention of muscular overload, however, is very difficult if a worker’s physical fitness or working skills are poor. Appropriate training will improve working skills and may reduce muscular loads at work. Also, regular physical exercise during work or leisure time will increase the muscular and cardio-respiratory capacities of the worker.


Ilkka Kuorinka

A person’s posture at work—the mutual organization of the trunk, head and extremities—can be analysed and understood from several points of view. Postures aim at advancing the work; thus, they have a finality which influences their nature, their time relation and their cost (physiological or otherwise) to the person in question. There is a close interaction between the body’s physiological capacities and characteristics and the requirement of the work.

Musculoskeletal load is a necessary element in body functions and indispensable in well-being. From the standpoint of the design of the work, the question is to find the optimal balance between the necessary and the excessive.

Postures have interested researchers and practitioners for at least the following reasons:

1.     A posture is the source of musculoskeletal load. Except for relaxed standing, sitting and lying horizontally, muscles have to create forces to balance the posture and/or control movements. In classical heavy tasks, for example in the construction industry or in the manual handling of heavy materials, external forces, both dynamic and static, add to the internal forces in the body, sometimes creating high loads which may exceed the capacity of the tissues. (See figure 29.13 .) Even in relaxed postures, when muscle work approaches zero, tendons and joints may be loaded and show signs of fatigue. A job with low apparent loading—an example being that of a microscopist—may become tedious and strenuous when it is carried out over a long period of time.

Figure 29.13 Too high hand positions or forward bending are amont the most common ways of creating “static” load

2.     Posture is closely related to balance and stability. In fact, posture is controlled by several neural reflexes where input from tactile sensations and visual cues from the surroundings play an important role. Some postures, like reaching objects from a distance, are inherently unstable. Loss of balance is a common immediate cause of work accidents. Some work tasks are performed in an environment where stability cannot always be guaranteed, for example, in the construction industry.

3.     Posture is the basis of skilled movements and visual observation. Many tasks require fine, skilled hand movements and close observation of the object of the work. In such cases, posture becomes the platform of these actions. Attention is directed to the task, and the postural elements are enlisted to support the tasks: the posture becomes motionless, the mus-cular load increases and becomes more static. A French research group showed in their classical study that immobility and musculoskeletal load increased when the rate of work increased (Teiger, Laville and Duraffourg 1974).

4.     Posture is a source of information on the events taking place at work. Observing posture may be intentional or unconscious. Skilful supervisors and workers are known to use postural observations as indicators of the work process. Often, observing postural information is not conscious. For example, on an oil drilling derrick, postural cues have been used to communicate messages between team members during different phases of a task. This takes place under conditions where other means of communication are not possible.

Safety, Health and Working Postures

From a safety and health point of view, all the aspects of posture described above may be important. However, postures as a source of musculoskeletal illnesses such as low back diseases have attracted the most attention. Musculoskeletal problems related to repetitive work are also connected to postures.

Low back pain (LBP) is a generic term for various low back diseases. It has many causes and posture is one possible causal element. Epidemiological studies have shown that physically heavy work is conducive to LBP and that postures are one element in this process. There are several possible mechanisms which explain why certain postures may cause LBP. Forward bending postures increase the load on the spine and ligaments, which are especially vulnerable to loads in a twisted posture. External loads, especially dynamic ones, such as those imposed by jerks and slipping, may increase the loads on the back by a large factor.

From a safety and health standpoint, it is important to identify bad postures and other postural elements as part of the safety and health analysis of work in general.

Recording and Measuring Working Postures

Postures can be recorded and measured objectively by the use of visual observation or more or less sophisticated measuring techniques. They can also be recorded by using self-rating schemes. Most methods consider posture as one of the elements in a larger context, for example, as part of the job content—as do the AET and Renault’s Les profils des postes (Landau and Rohmert 1981; RNUR 1976)—or as a starting point for biomechanical calculations that also take into account other components.

In spite of the advancements in measuring technology, visual observation remains, under field conditions, the only practicable means of systematically recording postures. However, the precision of such measurements remains low. In spite of this, postural observations can be a rich source of information on work in general.

The following short list of measuring methods and techniques presents selected examples:

1.     Self-reporting questionnaires and diaries. Self-reporting questionnaires and diaries are an economical means of collecting postural information. Self-reporting is based on the perception of the subject and usually deviates greatly from “objectively” observed postures, but may still convey important information about the tediousness of the work.

2.     Observation of postures. The observation of postures includes the purely visual recording of the postures and their components as well as methods in which an interview completes the information. Computer support is usually available for these methods. Many methods are available for visual observations. The method may simply contain a catalogue of actions, including postures of the trunk and limbs (e.g., Keyserling 1986; Van der Beek, Van Gaalen and Frings-Dresen 1992) .The OWAS method proposes a structured scheme for the analysis, rating and evaluation of trunk and limb postures designed for field conditions (Karhu, Kansi and Kuorinka 1977). The recording and analysis method may contain notation schemes, some of them quite detailed (as with the posture targeting method, by Corlett and Bishop 1976), and they may provide a notation for the position of many anatomical elements for each element of the task (Drury 1987).

3.     Computer-aided postural analyses. Computers have aided postural analyses in many ways. Portable computers and special programs allow easy recording and fast analysis of postures. Persson and Kilbom (1983) have developed the program VIRA for upper-limb study; Kerguelen (1986) has produced a complete recording and analysis package for work tasks; Kivi and Mattila (1991) have designed a computerized OWAS version for recording and analysis.

Video is usually an integral part of the recording and analysis process. The US National Institute for Occupational Safety and Health (NIOSH) has presented guidelines for using video methods in hazard analysis (NIOSH 1990).

Biomechanical and anthropometrical computer programs offer specialized tools for analysing some postural elements in the work activity and in the laboratory (e.g., Chaffin 1969).

Factors Affecting Working Postures

Working postures serve a goal, a finality outside themselves. That is why they are related to external working conditions. Postural analysis that does not take into account the work environment and the task itself is of limited interest to ergonomists.

The dimensional characteristics of the workplace largely define the postures (as in the case of a sitting task), even for dynamic tasks (for example, the handling of material in a confined space). The loads to be handled force the body into a certain posture, as does the weight and nature of the working tool. Some tasks require that body weight be used to support a tool or to apply force on the object of the work, as shown, for example in figure 29.14 .

Figure 29.14 Ergonomic aspects of standing

When joints are stretched uncomfortably, pressure can cause considerable fatigue. Standing on one leg can lead to a load pressure on the hip-joint which is equal to two  and a half times the weight of the body. A good example of how this can occur is found  in cases where the standing worker has to operate a badly positioned foot pedal.

Individual differences, age and sex influence postures. In fact, it has been found that a “typical” or “best” posture, for example in manual handling, is largely fiction. For each individual and each working situation, there are a number of alternative “best” postures from the standpoint of different criteria.

Job Aids and Supports for Working Postures

Belts, lumbar supports and orthotics have been recommended for tasks with a risk of low back pain or upper-limb musculoskeletal injuries. It has been assumed that these devices give support to muscles, for example, by controlling intra-abdominal pressure or hand movements. They are also expected to limit the range of movement of the elbow, wrist or fingers. There is no evidence that modifying postural elements with these devices would help to avoid musculoskeletal problems.

Postural supports in the workplace and on machinery, such as handles, supporting pads for kneeling, and seating aids, may be useful in alleviating postural loads and pain.

Safety and Health Regulations concerning Postural Elements

Postures or postural elements have not been subject to regulatory activities per se. However, several documents either contain statements which have a bearing on postures or include the issue of postures as an integral element of a regulation. A complete picture of the existing regulatory material is not available. The following references are presented as examples.

1.     The International Labour Organization published a Recommendation in 1967 on maximum loads to be handled. Although the Recommendation does not regulate postural elements as such, it has a significant bearing on postural strain. The Recommendation is now outdated but has served an important purpose in focusing attention on problems in manual material handling.

2.     The NIOSH lifting guidelines (NIOSH 1981), as such, are not regulations either, but they have attained that status. The guidelines derive weight limits for loads using the location of the load—a postural element—as a basis.

3.     In the International Organization for Standardization as well as in the European Community, ergonomics standards and directives exist which contain matter relating to postural elements (CEN 1990 and 1991).


Frank Darby

Aims and Principles

Biomechanics is a discipline that approaches the study of the body as though it were solely a mechanical system: all parts of the body are likened to mechanical structures and are studied as such. The following analogies may, for example, be drawn:

·     bones: levers, structural members

·     flesh: volumes and masses

·     joints: bearing surfaces and articulations

·     joint linings: lubricants

·     muscles: motors, springs

·     nerves: feedback control mechanisms

·     organs: power supplies

·     tendons: ropes

·     tissue: springs

·     body cavities: balloons.

The main aim of biomechanics is to study the way the body produces force and generates movement. The discipline relies primarily on anatomy, mathematics and physics; related disciplines are anthropometry (the study of human body measurements), work physiology and kinesiology (the study of the principles of mechanics and anatomy in relation to human movement).

In considering the occupational health of the worker, biomechanics helps to understand why some tasks cause injury and ill health. Some relevant types of adverse health effect are muscle strain, joint problems, back problems and fatigue.

Back strains and sprains and more serious problems involving the intervertebral discs are common examples of workplace injuries that can be avoided. These often occur because of a sudden particular overload, but may also reflect the exertion of excessive forces by the body over many years: problems may occur suddenly or may take time to develop. An example of a problem that develops over time is “seamstress’s finger”. A recent description describes the hands of a woman who, after 28 years of work in a clothing factory, as well as sewing in her spare time, developed hardened thickened skin and an inability to flex her fingers (Poole 1993). (Specifically, she suffered from a flexion deformity of the right index finger, prominent Heberden’s nodes on the index finger and thumb of the right hand, and a prominent callosity on the right middle finger due to constant friction from the scissors.) X-ray films of her hands showed severe degenerative changes in the outermost joints of her right index and middle fingers, with loss of joint space, articular sclerosis (hardening of tissue), osteophytes (bony growths at the joint) and bone cysts.

Inspection at the workplace showed that these problems were due to repeated hyperextension (bending up) of the outermost finger joint. Mechanical overload and restriction in blood flow (visible as a whitening of the finger) would be maximal across these joints. These problems developed in response to repeated muscle exertion in a site other than the muscle.

Biomechanics helps to suggest ways of designing tasks to avoid these types of injuries or of improving poorly designed tasks. Remedies for these particular problems are to redesign the scissors and to alter the sewing tasks to remove the need for the actions performed.

Two important principles of biomechanics are:

1.     Muscles come in pairs. Muscles can only contract, so for any joint there must be one muscle (or muscle group) to move it one way and a corresponding muscle (or muscle group) to move it in the opposite direction. Figure 29.15  illustrates the point for the elbow joint.

Figure 29.15 Skeletal muscles occur in pairs in order to initiate or reverse a movement

2.     Muscles contract most efficiently when the muscle pair is in relaxed balance. The muscle acts most efficiently when it is in the midrange of the joint it flexes. This is so for two reasons: first, if the muscle tries to contract when it is shortened, it will pull against the elongated opposing muscle. Because the latter is stretched, it will apply an elastic counterforce that the contracting muscle must overcome. Figure 29.16  shows the way in which muscle force varies with muscle length.

Figure 29.16 Muscle tension varies with muscle length

Second, if the muscle tries to contract at other than the midrange of the movement of the joint, it will operate at a mechanical disadvantage. Figure 29.17  illustrates the change in mechanical advantage for the elbow in three different positions.

Figure 29.17 Optimal positions for joint movement

An important criterion for work design follows from these principles: Work should be arranged so that it occurs with the opposing muscles of each joint in relaxed balance. For most joints, this means that the joint should be at about its midrange of movement.

This rule also means that muscle tension will be at a minimum while a task is performed. One example of the infringement of the rule is the overuse syndrome (RSI, or repetitive strain injury) which affects the muscles of the top of the forearm in keyboard operators who habitually operate with the wrist flexed up. Often this habit is forced on the operator by the design of the keyboard and workstation.


The following are some examples illustrating the application of biomechanics.

The optimum diameter of tool handles

The diameter of a handle affects the force that the muscles of the hand can apply to a tool. Research has shown that the optimum handle diameter depends on the use to which the tool is put. For exerting thrust along the line of the handle, the best diameter is one that allows the fingers and thumb to assume a slightly overlapping grip. This is about 40 mm. To exert torque, a diameter of about 50-65 mm is optimal. (Unfortunately, for both purposes most handles are smaller than these values.)

The use of pliers

As a special case of a handle, the ability to exert force with pliers depends on the handle separation, as shown in figure 29.18 .

Figure 29.18 Grip strength of pliers jaws exerted by male and female users  as a function of handle separation

Seated posture

Electromyography is a technique that can be used to measure muscle tension. In a study of the tension in the erector spinae muscles (of the back) of seated subjects, it was found that leaning back (with the backrest inclined) reduced the tension in these muscles. The effect can be explained because the backrest takes more of the weight of the upper body.

X-ray studies of subjects in a variety of postures showed that the position of relaxed balance of the muscles that open and close the hip joint corresponds to a hip angle of about 135°. This is close to the position (128°) naturally adopted by this joint in weightless conditions (in space). In the seated posture, with an angle of 90° at the hip, the hamstring muscles that run over both the knee and hip joints tend to pull the sacrum (the part of the vertebral column that connects with the pelvis) into a vertical position. The effect is to remove the natural lordosis (curvature) of the lumbar spine; chairs should have appropriate backrests to correct for this effort.


Why are screws inserted clockwise? The practice probably arose in unconscious recognition that the muscles that rotate the right arm clockwise (most people are right-handed) are larger (and therefore more powerful) that the muscles that rotate it anticlockwise.

Note that left-handed people will be at a disadvantage when inserting screws by hand. About 9% of the population are left-handed and will therefore require special tools in some situations: scissors and can openers are two such examples.

A study of people using screwdrivers in an assembly task revealed a more subtle relation between a particular movement and a particular health problem. It was found that the greater the elbow angle (the straighter the arm), the more people had inflammation at the elbow. The reason for this effect is that the muscle that rotates the forearm (the biceps) also pulls the head of the radius (lower arm bone) onto the capitulum (rounded head) of the humerus (upper arm bone). The increased force at the higher elbow angle caused greater frictional force at the elbow, with consequent heating of the joint, leading to the inflammation. At the higher angle, the muscle also had to pull with greater force to effect the screwing action, so a greater force was applied than would have been required with the elbow at about 90°. The solution was to move the task closer to the operators to reduce the elbow angle to about 90°.

The cases above demonstrate that a proper understanding of anatomy is required for the application of biomechanics in the workplace. Designers of tasks may need to consult experts in functional anatomy to anticipate the types of problems discussed. (The Pocket Ergonomist (Brown and Mitchell 1986) based on electromyographical research, suggests many ways of reducing physical discomfort at work.)

Manual Material Handling

The term manual handling includes lifting, lowering, pushing, pulling, carrying, moving, holding and restraining, and encompasses a large part of the activities of working life.

Biomechanics has obvious direct relevance to manual handling work, since muscles must move to carry out tasks. The question is: how much physical work can people be reasonably expected to do? The answer depends on the circumstances; there are really three questions that need to be asked. Each one has an answer that is based on scientifically researched criteria:

1.     How much can be handled without damage to the body (in the form, for example, of muscle strain, disc injury or joint problems)? This is called the biomechanical criterion.

2.     How much can be handled without overexerting the lungs (breathing hard to the point of panting)? This is called the physiological criterion.

3.     How much do people feel able to handle comfortably? This is called the psychophysical criterion.

There is a need for these three different criteria because there are three broadly different reactions that can occur to lifting tasks: if the work goes on all day, the concern will be how the person feels about the task—the psychophysical criterion; if the force to be applied is large, the concern would be that muscles and joints are not overloaded to the point of damage—the biomechanical criterion; and if the rate of work is too great, then it may well exceed the physiological criterion, or the aerobic capacity of the person.

Many factors determine the extent of the load placed on the body by a manual handling task. All of them suggest opportunities for control.

Posture and Movements

If the task requires a person to twist or reach forward with a load, the risk of injury is greater. The workstation can often be redesigned to prevent these actions. More back injuries occur when the lift begins at ground level compared to mid-thigh level, and this suggests simple control measures. (This applies to high lifting as well.)

The load.

The load itself may influence handling because of its weight and its location. Other factors, such as its shape, its stability, its size and its slipperiness may all affect the ease of a handling task.

Organization and environment.

The way work is organized, both physically and over time (temporally), also influences handling. It is better to spread the burden of unloading a truck in a delivery bay over several people for an hour rather than to ask one worker to spend all day on the task. The environment influences handling—poor light, cluttered or uneven floors and poor housekeeping may all cause a person to stumble.

Personal factors.

Personal handling skills, the age of the person and the clothing worn also can influence handling requirements. Education for training and lifting are required both to provide necessary information and to allow time for the development of the physical skills of handling. Younger people are more at risk; on the other hand, older people have less strength and less physiological capacity. Tight clothing can increase the muscle force required in a task as people strain against the tight cloth; classic examples are the nurse’s smock uniform and tight overalls when people do work above their heads.

Recommended Weight Limits

The points mentioned above indicate that it is impossible to state a weight that will be “safe” in all circumstances. (Weight limits have tended to vary from country to country in an arbitrary manner. Indian dockers, for example, were once “allowed” to lift 110 kg, while their counterparts in the former People’s Democratic Republic of Germany were “limited” to 32 kg.) Weight limits have also tended to be too great. The 55 kg suggested in many countries is now thought to be far too great on the basis of recent scientific evidence. The National Institute for Occupational Safety and Health (NIOSH) in the United States has adopted 23 kg as a load limit in 1991 (Waters et al. 1993).

Each lifting task needs to be assessed on its own merits. A useful approach to determining a weight limit for a lifting task is the equation developed by NIOSH:

     RWL = LC × HM × VM × DM × AM × CM × FM


RWL = recommended weight limit for the task in question

HM = the horizontal distance from the centre of gravity of the load to the midpoint between the ankles (minimum 15 cm, maximum 80 cm)

VM = the vertical distance between the centre of gravity of the load and the floor at the start of the lift (maximum 175 cm)

DM = the vertical travel of the lift (minimum 25 cm, maximum 200 cm)

AM = asymmetry factor–the angle the task deviates from straight out in front of the body

CM = coupling multiplier–the ability to get a good grip on the item to be lifted, which is found in a reference table

FM = frequency multipliers–the frequency of the lifting.

All variables of length in the equation are expressed in units of centimetres. It should be noted that 23 kg is the maximum weight that NIOSH recommends for lifting. This has been reduced from 40 kg after observation of many people doing many lifting tasks has revealed that the average distance from the body of the start of the lift is 25 cm, not the 15 cm assumed in an earlier version of the equation (NIOSH 1981).

Lifting index.

By comparing the weight to be lifted in the task and the RWL, a lifting index (LI) can be obtained according to the relationship:

     LI=(weight to be handled)/RWL.

Therefore, a particularly valuable use of the NIOSH equation is the placing of lifting tasks in order of severity, using the lifting index to set priorities for action. (The equation has a number of limitations, however, that need to be understood for its most effective application. See Waters et al. 1993).

Estimating Spinal Compression Imposed by the Task

Computer software is available to estimate the spinal compression produced by a manual handling task. The 2D and 3D Static Strength Prediction Programs from the University of Michigan (“Backsoft”) estimate spinal compression. The inputs required to the program are:

·     the posture in which the handling activity is performed

·     the force exerted

·     the direction of the force exertion

·     the number of hands exerting the force

·     the percentile of the population under study.

The 2D and 3D programs differ in that the 3D software allows computations applying to postures in three dimensions. The program output gives spinal compression data and lists the percentage of the population selected that would be able to do the particular task without exceeding suggested limits for six joints: ankle, knee, hip, first lumbar disc-sacrum, shoulder and elbow. This method also has a number of limitations that need to be fully understood in order to derive maximum value out of the program.


Étienne Grandjean*

*This article is adapted from the 3rd edition of the Encyclopaedia of Occupational Health  and Safety.

The two concepts of fatigue and rest are familiar to all from personal experience. The word “fatigue” is used to denote very different conditions, all of which cause a reduction in work capacity and resistance. The very varied use of the concept of fatigue has resulted in an almost chaotic confusion and some clarification of current ideas is necessary. For a long time, physiology has distinguished between muscular fatigue and general fatigue. The former is an acute painful phenomenon localized in the muscles: general fatigue is characterized by a sense of diminishing willingness to work. This article is concerned only with general fatigue, which may also be called “psychic fatigue” or “nervous fatigue” and the rest that it necessitates.

General fatigue may be due to quite different causes, the most important of which are shown in figure 29.19 . The effect is as if, during the course of the day, all the various stresses experienced accumulate within the organism, gradually producing a feeling of increasing fatigue. This feeling prompts the decision to stop work; its effect is that of a physiological prelude to sleep.

Figure 29.19 Diagrammatic presentation of the cumulative effect of the everyday causes of fatigue

Fatigue is a salutary sensation if one can lie down and rest. However, if one disregards this feeling and forces oneself to continue working, the feeling of fatigue increases until it becomes distressing and finally overwhelming. This daily experience demonstrates clearly the biological significance of fatigue which plays a part in sustaining life, similar to that played by other sensations such as, for example, thirst, hunger, fear, etc.

Rest is represented in figure 29.19  as the emptying of a barrel. The phenomenon of rest can take place normally if the organism remains undisturbed or if at least one essential part of the body is not subjected to stress. This explains the decisive part played on working days by all workbreaks, from the short pause during work to the nightly sleep. The simile of the barrel illustrates how necessary it is for normal living to reach a certain equilibrium between the total load borne by the organism and the sum of the possibilities for rest.

Neurophysiological interpretation of fatigue

The progress of neurophysiology during the last few decades has greatly contributed to a better understanding of the phenomena triggered off by fatigue in the central nervous system.

The physiologist Hess was the first to observe that electrical stimulation of certain of the diencephalic structures, and more especially of certain of the structures of the medial nucleus of the of the thalamus, gradually produced an inhibiting effect which showed itself in a deterioration in the capacity for reaction and in a tendency to sleep. If stimulation was continued for a certain time, general relaxation was followed by sleepiness and finally by sleep. It was later proved that, starting from these structures, an active inhibition may extend to the cerebral cortex where all conscious phenomena are centred. This is reflected not only in behaviour, but also in the electrical activity of the cerebral cortex. Other experiments have also succeeded in initiating inhibitions from other sub-cortical regions.

The conclusion which can be drawn from all these studies is that there are structures located in the diencephalon and mesencephalon which represent an effective inhibiting system and which trigger off fatigue with all its accompanying phenomena.

Inhibition and activation

Numerous experiments performed on animals and humans have shown that the general disposition of them both to reaction depends not only on this system of inhibition, but essentially also on a system functioning in an antagonistic manner, known as the reticular ascending system of activation. We know from experiments that the reticular formation contains structures which control the degree of wakefulness, and consequently the general dispositions to reaction. Nervous links exist between these structures and the cerebral cortex where the activating influences are exerted on the consciousness. Moreover, the activating system receives stimulations from the sensory organs. Other nervous connections transmit impulses from the cerebral cortex—the area of perception and thought—to the activation system. On the basis of these neurophysiological concepts it can be established that external stimuli as well as influences originating in the areas of consciousness may, in passing through the activating system, stimulate a disposition to reaction.

In addition, many other investigations make it possible to conclude that stimulation of the activating system frequently spreads also from the vegetative centres, and cause the organism to orient towards an expenditure of energy, towards work, struggle, flight, etc. (ergotropic conversion of the internal organs). Conversely, it appears that stimulation of the inhibiting system within the sphere of the vegetative nervous system causes the organism to tend towards rest, reconstitution of its reserves of energy, phenomena of assimilation (trophotropic conversion).

By synthesis of all these neurophysiological findings the following conception of fatigue can be established: the state and feeling of fatigue are conditioned by the functional reaction of the consciousness in the cerebral cortex, which is, in turn, governed by two mutually antagonistic systems—the inhibiting system and the activating system. Thus, the disposition of humans to work depends at each moment on the degree of activation of the two systems: if the inhibiting system is dominant, the organism will be in a state of fatigue; when the activating system is dominant, it will exhibit an increased disposition to work.

This psychophysiological conception of fatigue makes it possible to understand certain of its symptoms which are sometimes difficult to explain. Thus, for example, a feeling of fatigue may disappear suddenly when some unexpected outside event occurs or when emotional tension develops. It is clear in both these cases that the activating system has been stimulated. Conversely, if the surroundings are monotonous or work seems boring, the functioning of the activating system is diminished and the inhibiting system becomes dominant. This explains why fatigue appears in a monotonous situation without the organism being subjected to any workload.

Figure 29.20  depicts diagrammatically the notion of the mutually antagonistic systems of inhibition and activation.

Figure 29.20 Diagrammatic presentation of the control of disposition to work  by means of inhibiting and activating systems

Clinical fatigue

It is a matter of common experience that pronounced fatigue occurring day after day will gradually produce a state of chronic fatigue. The feeling of fatigue is then intensified and comes on not only in the evening after work but already during the day, sometimes even before the start of work. A feeling of malaise, frequently of an emotive nature, accompanies this state. The following symptoms are often observed in persons suffering from fatigue: heightened psychic emotivity (antisocial behaviour, incompatibility), tendency to depression (unmotivated anxiety), and lack of energy with loss of initiative. These psychic effects are often accompanied by an unspecific malaise and manifest themselves by psychosomatic symptoms: headaches, vertigo, cardiac and respiratory functional disturbances, loss of appetite, digestive disorders, insomnia, etc.

In view of the tendency towards morbid symptoms which accompany chronic fatigue, it may justly be called clinical fatigue. There is a tendency towards increased absenteeism, and particularly to more absences for short periods. This would appear to be caused both by the need for rest and by increased morbidity. The state of chronic fatigue occurs particularly among persons exposed to psychic conflicts or difficulties. It is sometimes very difficult to distinguish the external and internal causes. In fact it is almost impossible to distinguish cause and effect in clinical fatigue: a negative attitude towards work, superiors or workplace may just as well be the cause of clinical fatigue as the result.

Research has shown that the switchboard operators and supervisory personnel employed in telecommunications services exhibited a significant increase in physiological symptoms of fatigue after their work (visual reaction time, flicker fusion frequency, dexterity tests). Medical investigations revealed that in these two groups of workers there was a significant increase in neurotic conditions, irritability, difficulty in sleeping and in the chronic feeling of lassitude, by comparison with a similar group of women employed in the technical branches of the postal, telephone and telegraphic services. The accumulation of symptoms was not always due to a negative attitude on the part of the women affected towards their job or their working conditions.

Preventive Measures

These is no panacea for fatigue but much can be done to alleviate the problem by attention to general working conditions and the physical environment at the workplace. For example much can be achieved by the correct arrangement of hours of work, provision of adequate rest periods and suitable canteens and rest rooms; adequate paid holidays should also be given to workers. The ergonomic study of the workplace can also help in the reduction of fatigue by ensuring that seats, tables and work benches are of suitable dimensions and that the work flow is correctly organized. In addition, noise control, air-conditioning, heating, ventilation and lighting may all have a beneficial effect on delaying the onset of fatigue in workers.

Monotony and tension may also be alleviated by a controlled use of colour and decoration in the surroundings, intervals of music and sometimes breaks for physical exercises for sedentary workers. Training of workers and in particular of supervisory and management staff also play an important part.


Rolf Helbig and Walter Rohmert

Fatigue and recovery are periodic processes in every living organism. Fatigue can be described as a state which is characterized by a feeling of tiredness combined with a reduction or undesired variation in the performance of the activity (Rohmert 1973).

Not all the functions of the human organism become tired as a result of use. Even when asleep, for example, we breathe and our heart is pumping without pause. Obviously, the basic functions of breathing and heart activity are possible throughout life without fatigue and without pauses for recovery.

On the other hand, we find after fairly prolonged heavy work that there is a reduction in capacity—which we call fatigue. This does not apply to muscular activity alone. The sensory organs or the nerve centres also become tired. It is, however, the aim of every cell to balance out the capacity lost by its activity, a process which we call recovery.

Stress, Strain, Fatigue and Recovery

The concepts of fatigue and recovery at human work is closely related to the ergonomic concepts of stress and strain (Rohmert 1984) (figure 29.21).

Figure 29.21 Stress, strain and fatigue

Stress means the sum of all parameters of work in the working system influencing people at work, which are perceived or sensed mainly over the receptor system or which put demands on the effector system. The parameters of stress result from the work task (muscular work, non-muscular work—task-oriented dimensions and factors) and from the physical, chemical and social conditions under which the work has to be done (noise, climate, illumination, vibration, shift work, etc.—situation-oriented dimensions and factors).

The intensity/difficulty, the duration and the composition (i.e., the simultaneous and successive distribution of these specific demands) of the stress factors results in an combined stress, which all the exogenous effects of a working system exert on the working person. This combined stress can be actively coped with or passively put up with, specifically depending on the behaviour of the working person. The active case will involve activities directed towards the efficiency of the working system, while the passive case will induce reactions (voluntary or involuntary), which are mainly concerned with minimizing stress. The relation between the stress and activity is decisively influenced by the individual characteristics and needs of the working person. The main factors of influence are those that determine performance and are related to motivation and concentration, and those related to disposition, which can be referred to as abilities and skills.

The stresses relevant to behaviour, which are manifest in certain activities, cause individually different strains. The strains can be indicated by the reaction of physiological or biochemical indicators (e.g., raising the heart rate) or it can be perceived. Thus, the strains are susceptible to “psycho-physical scaling”, which estimates the strain as experienced by the working person. In a behavioural approach, the existence of strain can also be derived from an activity analysis. The intensity with which indicators of strain (physiological-biochemical, behaviouristic or psycho-physical) react depends on the intensity, duration and combination of stress factors as well as on the individual characteristics, abilities, skills and needs of the working person.

Despite constant stresses the indicators derived from the fields of activity, performance and strain may vary over time (temporal effect). Such temporal variations are to be interpreted as processes of adaptation by the organic systems. The positive effects cause a reduction of strain/improvement of activity or performance (e.g., through training). In the negative case, however, they will result in increased strain/reduced activity or performance (e.g., fatigue, monotony).

The positive effects may come into action if the available abilities and skills are improved in the working process itself, e.g., when the threshold of training stimulation is slightly exceeded. The negative effects are likely to appear if so-called endurance limits (Rohmert 1984) are exceeded in the course of the working process. This fatigue leads to a reduction of physiological and psychological functions, which can be compensated by recovery.

To restore the original performance rest allowances or at least periods with less stress are necessary (Luczak 1993).

When the process of adaptation is carried beyond defined thresholds, the employed organic system may be damaged so as to cause a partial or total deficiency of its functions. An irreversible reduction of functions may appear when stress is far too high (acute damage) or when recovery is impossible for a longer time (chronic damage). A typical example of such damage is noise-induced hearing loss.

Models of Fatigue

Fatigue can be many-sided, depending on the form and combi-nation of strain, and a general definition of it is yet not possible. The biological proceedings of fatigue are in general not measurable in a direct way, so that the definitions are mainly oriented towards the fatigue symptoms. These fatigue symptoms can be divided, for example, into the following three categories.

1.     Physiological symptoms: fatigue is interpreted as a decrease of functions of organs or of the whole organism. It results in physiological reactions, e.g., in an increase of heart rate frequency or electrical muscle activity (Laurig 1970).

2.     Behavioural symptoms: fatigue is interpreted mainly as a decrease of performance parameters. Examples are increasing errors when solving certain tasks, or an increasing variability of performance.

3.     Psycho-physical symptoms: fatigue is interpreted as an increase of the feeling of exertion and deterioration of sensation, depending on the intensity, duration and composition of stress factors.

In the process of fatigue all three of these symptoms may play a role, but they may appear at different points in time.

Physiological reactions in organic systems, particularly those involved in the work, may appear first. Later on the feelings of exertion may be affected. Changes in performance are manifested generally in a decreasing regularity of work or in an increasing quantity of errors, although the mean of the performance may not yet be affected. On the contrary, with appropriate motivation the working person may even try to maintain performance through will-power. The next step may be a clear reduction of performance ending with a breakdown of performance. The physiological symptoms may lead to a breakdown of the organism including changes of the structure of personality and in exhaustion. The process of fatigue is explained in the theory of successive destabilization (Luczak 1983).

The principal trend of fatigue and recovery is shown in figure 29.22 .

Figure 29.22 Principal trend of fatigue and recovery

Prognosis of Fatigue and Recovery

In the field of ergonomics there is a special interest in predicting fatigue dependent on the intensity, duration and composition of stress factors and to determine the necessary recovery time. Table 29.2  shows those different activity levels and consideration periods and possible reasons of fatigue and different possibilities of recovery.

Table 29.2 Fatigue and recovery dependent on activity levels

Level of activity


Fatigue from

Recovery by

Work life


Overexertion for  decades


Phases of work life


Overexertion for  years


Sequences of  work shifts


Unfavourable shift  regimes

Weekend, free  days

One work shift

One day

Stress above  endurance limits

Free time, rest  periods



Stress above  endurance limits

Rest period

Part of a task


Stress above  endurance limits

Change of stress  factors

In ergonomic analysis of stress and fatigue for determining the necessary recovery time, considering the period of one working day is the most important. The methods of such analyses start with the determination of the different stress factors as a function of time (Laurig 1992) (figure 29.23).

Figure 29.23 Stress as a function of time

The stress factors are determined from the specific work content and from the conditions of work. Work content could be the production of force (e.g., when handling loads), the coordination of motor and sensory functions (e.g., when assembling or crane operating), the conversion of information into reaction (e.g., when controlling), the transformations from input to output information (e.g., when programming, translating) and the production of information (e.g., when designing, problem solving). The conditions of work include physical (e.g., noise, vibration, heat), chemical (chemical agents) and social (e.g., colleagues, shift work) aspects.

In the easiest case there will be a single important stress factor while the others can be neglected. In those cases, especially when the stress factors results from muscular work, it is often possible to calculate the necessary rest allowances, because the basic concepts are known.

For example, the sufficient rest allowance in static muscle work depends on the force and duration of muscular contraction as in an exponential function linked by multiplication according to the formula:



R.A. = Rest allowance in percentage of t

t = duration of contraction (working period) in minutes

T = maximal possible duration of contraction in minutes

f = the force needed for the static force and

F = maximal force.

The connection between force, holding time and rest allowances is shown in figure 29.24 .

Figure 29.24 Percentage rest allowances for various combinations of holding forces and time

Similar laws exist for heavy dynamic muscular work (Rohmert 1962), active light muscular work (Laurig 1974) or different industrial muscular work (Schmidtke 1971). More rarely you find comparable laws for non-physical work, e.g., for computing (Schmidtke 1965). An overview of existing methods for determining rest allowances for mainly isolated muscle and non-muscle work is given by Laurig (1981) and Luczak (1982).

More difficult is the situation where a combination of different stress factors exists, as shown in figure 29.25 , which affect the working person simultaneously (Laurig 1992).

Figure 29.25 The combination of two stress factors

The combination of two stress factors, for example, can lead to different strain reactions depending on the laws of combination. The combined effect of different stress factors can be indifferent, compensatory or cumulative.

In the case of indifferent combination laws, the different stress factors have an effect on different subsystems of the organism. Each of these subsystems can compensate for the strain without the strain being fed into a common subsystem. The overall strain depends on the highest stress factor, and thus laws of superposition are not needed.

A compensatory effect is given when the combination of different stress factors leads to a lower strain than does each stress factor alone. The combination of muscular work and low temperatures can reduce the overall strain, because low temperatures allow the body to lose heat which is produced by the muscular work.

A cumulative effect arises if several stress factors are superimposed, that is, they must pass through one physiological “bottleneck”. An example is the combination of muscular work and heat stress. Both stress factors affect the circulatory system as a common bottleneck with resultant cumulative strain.

Possible combination effects between muscle work and physical conditions are described in Bruder (1993) (see table 29.3).

Table 29.3 Rules of combination effects of two stress factors on strain






Heavy dynamic work




Active light muscle work





Static muscle work





0 indifferent effect; + cumulative effect; – compensatory effect.

Source: Adapted from Bruder 1993.

For the case of the combination of more than two stress factors, which is the normal situation in practice, only limited scientific knowledge is available. The same applies for the successive combination of stress factors, (i.e., the strain effect of different stress factors which affect the worker successively). For such cases, in practice, the necessary recovery time is determined by measuring physiological or psychological parameters and using them as integrating values.


Winfried Hacker

Mental Versus Physical Workload

The concept of mental workload (MWL) has become increasingly important since modern semi-automated and computerized technologies may impose severe requirements on human mental or information-processing capabilities within both manufacturing and administrative tasks. Thus, especially for the domains of job analysis, evaluation of job requirements and job design, the conceptualization of mental workload has become even more important than that of traditional physical workload.

Definitions of Mental Workload

There is no agreed-upon definition of mental workload. The main reason is that there are at least two theoretically well-based approaches and definitions: (1) MWL as viewed in terms of the task requirements as an independent, external variable with which the working subjects have to cope more or less efficiently, and (2) MWL as defined in terms of an interaction between task requirements and human capabilities or resources (Hancock and Chignell 1986; Welford 1986; Wieland-Eckelmann 1992).

Although arising from different contexts, both approaches offer necessary and well-founded contributions to different problems.

The requirements resources interaction approach was developed within the context of personality-environment fit/misfit theories which try to explain interindividually differing responses to identical physical and psychosocial conditions and requirements. Thus, this approach may explain individual differences in the patterns of subjective responses to loading requirements and conditions, for example, in terms of fatigue, monotony, affective aversion, burnout or diseases (Gopher and Donchin 1986; Hancock and Meshkati 1988).

The task requirements approach was developed within those parts of occupational psychology and ergonomics which are predominantly engaged in task design, especially in the design of new and untried future tasks, or so-called prospective task design. The background here is the stress-strain concept. Task requirements constitute the stress and the working subjects try to adapt to or to cope with the demands much as they would to other forms of stress (Hancock and Chignell 1986). This task requirements approach tries to answer the question of how to design tasks in advance in order to optimize their later impact on the—often still unknown—employees who will accomplish these future tasks.

There are at least a few common characteristics of both conceptualizations of MWL.

1.     MWL mainly describes the input aspects of tasks, that is to say, the requirements and demands made by the tasks on the employees, which might be used in forecasting the task outcome.

2.     The mental aspects of MWL are conceptualized in terms of information processing. Information processing includes cognitive as well as motivational/volitional and emotional aspects, since the persons always will evaluate the demands which they have to cope with and, thus, will self-regulate their effort for processing.

3.     Information-processing integrates mental processes, representations (for example, knowledge, or mental models of a machine) and states (for example, states of consciousness, degrees of activation and, less formally, mood).

4.     MWL is a multidimensional characteristic of task requirements, since every task varies in a couple of interrelated but nevertheless distinct dimensions which separately must be dealt with in task design.

5.     MWL will have a multidimensional impact which at least will determine (a) behaviour, for example, the strategies and the resulting performance, (b) perceived, subjective short-term well-being with consequences for health in the long run, and (c) psycho-physiological processes, for example, alterations of blood pressure at work, which may become long-term effects of a positive kind (promoting, say, fitness improvement) or of a negative kind (involving impairments or ill-health).

6.     From the point of view of task design, MWL should not be minimized—as would be necessary in the case of carcinogenic air pollution—but optimized. The reason is that demanding mental task requirements are inevitable for well-being, health promotion and qualification since they offer the necessary activating impulses, fitness prerequisites and learning/training options. Missing demands on the contrary may result in deactivation, loss of physical fitness, de-qualification and deterioration of so-called intrinsic (task content-dependent) motivation. Findings in this area led to the technique of health and personality promoting task design (Hacker 1986).

7.     MWL therefore, in any case, must be dealt with in task analysis, task requirement evaluation as well as in corrective and prospective task design.

Theoretical Approaches: Requirement-Resources Approaches

From the person-environment fit point of view, MWL and its consequences may be roughly categorized—as is shown in figure 29.26—into underload, properly fitting load, and overload. This categorization results from the relationships between task requirements and mental capabilities or resources. Task requirements may exceed, fit with or fail to be satisfied by the resources. Both types of misfit may result from quantitative or qualitative modes of misfit and will have qualitatively differing, but in any case negative, consequences (see figure 29.26).

Figure 29.26 Types and consequences of requirements-resources relationships

Some theories attempt to define MWL starting from the resource or capacity side of the requirements, namely, resources relationships. These resource theories might be subdivided into resource volume and resource allocation theories (Wieland-Eckelmann 1992). The amount of available capacity may come from a single source (single resource theories) which determines processing. The availability of this resource varies with arousal (Kahneman 1973). Modern multiple resource theories suppose a set of relatively independent processing resources. Thus, performance will depend on the condition whether the same resource or different resources are required simultaneously and concurrently. Different resources are, for example, encoding, processing or responding resources (Gopher and Donchin 1986; Welford 1986). The most critical problem for these types of theories is the reliable identification of one or more well-defined capacities for qualitatively different processing operations.

Resource allocation theories suppose qualitatively changing processing as a function of varying strategies. Depending on the strategies, differing mental processes and representations may be applied for task accomplishment. Thus, not the volume of stable resources but flexible allocation strategies become the key point of interest. Again, however, essential questions—especially concerning the methods of diagnosis of the strategies—remain to be answered.

Assessment of MWL: using requirement-resource approaches

A strict measurement of MWL at present would be impossible since well-defined units of measurement are lacking. But, to be sure, the conceptualization and the instruments for an assessment should meet the general quality criteria of diagnostic approaches, which have objectivity, reliability, validity and usefulness. However, as of now, only a little is known about the overall quality of proposed techniques or instruments.

There are a sizeable number of reasons for the remaining difficulties with assessing MWL according to the requirement-resource approaches (O’Donnell and Eggemeier 1986). An attempt at MWL assessment has to cope with questions like the following: is the task self-intended, following self-set goals, or is it directed with reference to an externally defined order? Which type of capacities (conscious intellectual processing, application of tacit knowledge, etc.) are required, and are they called upon simultaneously or sequentially? Are there different strategies available and, if so, which ones? Which coping mechanisms of a working person might be required?

The most often discussed approaches try to assess MWL in terms of:

1.     required effort (effort assessment) approaches applying—in some versions psychophysiologically validated—scaling procedures such as those offered by Bartenwerfer (1970) or Eilers, Nachreiner and Hänicke (1986), or

2.     occupied or, vice versa, residual mental capacity (mental capacity assessment) approaches applying the traditional dual task techniques as, for example, discussed by O’Donnell and Eggemeier (1986).

Both approaches are heavily dependent on the assumptions of single resource theories and consequently have to struggle with the above-mentioned questions.

Effort assessment. Such effort assessment techniques as, for example, the scaling procedure applied to a perceived correlate of the general central activation, developed and validated by Bartenwerfer (1970), offer verbal scales which may be completed by graphic ones and which grade the unidimensionally varying part of the perceived required effort during task accomplishment. The subjects are requested to describe their perceived effort by means of one of the steps of the scale provided.

The quality criteria mentioned above are met by this technique. Its limitations include the unidimensionality of the scale, covering an essential but questionable part of perceived effort; the limited or absent possibility of forecasting perceived personal task outcomes, for example, in terms of fatigue, boredom or anxiety; and especially the highly abstract or formal character of effort which will identify and explain nearly nothing of the content-dependent aspects of MWL as, for example, any possible useful applications of the qualification or the learning options.

Mental capacity assessment. The mental capacity assessment consists of the dual task techniques and a related data interpretation procedure, called the performance operating characteristic (POC). Dual task techniques cover several procedures. Their common feature is that subjects are requested to perform two tasks simultaneously. The crucial hypothesis is: the less an additional or secondary task in the dual task situation will deteriorate in comparison with the base-line single task situation, the lower the mental capacity requirements of the primary task, and vice versa. The approach is now broadened and various versions of task interference under dual task conditions are investigated. For example, the subjects are instructed to perform two tasks concurrently with graded variations of the priorities of the tasks. The POC curve graphically illustrates the effects of possible dual-task combinations arising from sharing limited resources among the concurrently performed tasks.

The critical assumptions of the approach mainly consist in the suggestions that every task will require a certain share of a stable, limited conscious (versus unconscious, automated, implicit or tacit) processing capacity, in the hypothetical additive relationship of the two capacity requirements, and in the restriction of the approach to performance data only. The latter might be misleading for several reasons. First of all there are substantial differences in the sensitivity of performance data and subjectively perceived data. Perceived load seems to be determined mainly by the amount of required resources, often operationalized in terms of working memory, whereas performance measures seem to be determined predominantly by the efficiency of the sharing of resources, depending on allocation strategies (this is dissociation theory; see Wickens and Yeh 1983). Moreover, individual differences in information processing abilities and personality traits strongly influence the indicators of MWL within the subjective (perceived), performance and psychophysiological areas.

Theoretical Approaches: Task Requirement Approaches

As has been shown, task requirements are multidimensional and, thus, may not be described sufficiently by means of only one dimension, whether it be the perceived effort or the residual conscious mental capacity. A more profound description might be a profile-like one, applying a theoretically selected pattern of graded dimensions of task characteristics. The central issue is thus the conceptualization of “task”, especially in terms of task content, and of “task accomplishment”, especially in terms of the structure and phases of goal-oriented actions. The role of the task is stressed by the fact that even the impact of contextual conditions (like temperature, noise or working hours) on the persons are task-dependent, since they are mediated by the task acting as a gate device (Fisher 1986). Various theoretical approaches sufficiently agree regarding those critical task dimensions, which offer a valid prediction of the task outcome. In any case, task outcome is twofold, since (1) the intended result must be achieved, meeting the performance-outcome criteria, and (2) a number of unintended personal short-term and cumulative long-term side effects will emerge, for example fatigue, boredom (monotony), occupational diseases or improved intrinsic motivation, knowledge or skills.

Assessment of MWL. With task requirement approaches, action-oriented approaches like those of complete versus partialized actions or the motivation potential score (for an elaboration of both see Hacker 1986), propose as indispensable task characteristics for analysis and evaluation at least the following:

·     temporal and procedural autonomy regarding decisions on self-set goals and, consequently, transparency, predictability and control of the work situation

·     number and variety of subtasks (especially concerning preparation, organization and checking of the results of implementation) and of actions accomplishing these subtasks (i.e., whether such actions involve cyclical completeness versus fragmentation)

·     variety (“level”) of action-regulating mental processes and representations. These may be mentally automated or routinized ones, knowledge-based “if-then” ones or intellectual and problem-solving ones. (They may also be characterized by hierarchical completeness as opposed to fragmentation)

·     required cooperation

·     long-term learning requirements or options.

The identification of these task characteristics requires the joint procedures of job/task analysis, including document analyses, observations, interviews and group discussions, which must be integrated in a quasi-experimental design (Rudolph, Schönfelder and Hacker 1987). Task analysis instruments which may guide and assist the analysis are available. Some of them assist only the analysis (for example, NASA-TLX Task Load Index, Hart and Staveland, 1988) while others are useful for evaluation and design or redesign. An example here is the TBS-GA (Tätigkeitsbewertungs System für geistige Arbeit [Task Diagnosis Survey—Mental Work]); see Rudolph, Schönfelder and Hacker (1987).


Herbert Heuer

The concept of vigilance refers to a human observer’s state of alertness in tasks that demand efficient registration and processing of signals. The main characteristics of vigilance tasks are relatively long durations and the requirement to detect infrequent and unpredictable target stimuli (signals) against a background of other stimulus events.

Vigilance Tasks

The prototypical task for vigilance research was that of radar operators. Historically, their apparently unsatisfactory performance during the Second World War has been a major impetus for the extensive study of vigilance. Another major task requiring vigilance is industrial inspection. More generally, all kinds of monitoring tasks which require the detection of relatively infrequent signals embody the risk of failures to detect and to respond to these critical events.

Vigilance tasks make up a heterogeneous set and vary on several dimensions, in spite of their common characteristics. An obviously important dimension is the overall stimulus rate as well as the rate of target stimuli. It is not always possible to define stimulus rate unambiguously. This is the case in tasks which require the detection of target events against continuously presented background stimuli, as in detecting critical values on a set of dials in a monitoring task. A less obviously important distinction is that between successive-discrimination tasks and simultaneous-discrimination tasks. In simultaneous-discrimination tasks both target stimuli and background stimuli are present at the same time, while in successive-discrimination tasks one is presented after the other so that some demands on memory are made. Although most vigilance tasks require detection of visual stimuli, stimuli in other modalities have also been studied. Stimuli can be confined to a single spatial location, or there can be different sources for target stimuli. Target stimuli can differ from background stimuli by physical characteristics, but also by more conceptual ones (like a certain pattern of meter readings that can differ from other patterns). Of course, the conspicuousness of targets can vary: some can be detected easily, while others may be hard to discriminate from background stimuli. Target stimuli can be unique or there can be sets of target stimuli without well-defined boundaries to set them off from background stimuli, as is the case in many industrial inspection tasks. This list of dimensions on which vigilance tasks differ can be expanded, but even this length of the list suffices to emphasize the heterogeneity of vigilance tasks and thus the risks involved in generalizing certain observations across the full set.

Performance Variations and the Vigilance Decrement

The most frequently used performance measure in vigilance tasks is the proportion of target stimuli, for example, faulty products in industrial inspection, that have been detected; this is an estimate of the probability of so-called hits. Those target stimuli that remain unnoticed are called misses. Although the hit rate is a convenient measure, it is somewhat incomplete. There is a trivial strategy that allows one to achieve 100% hits: one only has to classify all stimuli as targets. However, the hit rate of 100% is then accompanied by a false-alarm rate of 100%, that is, not only the target stimuli are correctly detected, but the background stimuli are incorrectly “detected” as well. This line of reasoning makes it quite clear that whenever there are false alarms at all, it is important to know their proportion in addition to the hit rate. Another measure for performance in a vigilance task is the time needed to respond to target stimuli (response time).

Performance in vigilance tasks exhibits two typical attributes. The first one is the low overall level of vigilance performance. It is low in comparison with an ideal situation for the same stimuli (short observation periods, high readiness of the observer for each discrimination, etc.). The second attribute is the so-called vigilance decrement, the decline of performance in the course of the watch which can start within the first few minutes. Both these observations refer to the proportion of hits, but they have also been reported for response times. Although the vigilance decrement is typical of vigilance tasks, it is not universal.

In investigating the causes of poor overall performance and vigilance decrements, a distinction will be made among concepts that are related to the basic characteristics of the task and concepts that are related to organismic and task-unrelated situational factors. Among the task-related factors strategic and non-strategic ones can be distinguished.

Strategic processes in vigilance tasks

The detection of a signal like a faulty product is partly a matter of the observer’s strategy and partly a matter of the signal’s discriminability. This distinction is based on the theory of signal detection (TSD), and some basics of the theory need to be presented in order to highlight the distinction’s importance. Consider a hypothetical variable, defined as “evidence for the presence of a signal”. Whenever a signal is presented, this variable takes on some value, and whenever a background stimulus is presented, it takes on a value that is lower on the average. The value of the evidence variable is assumed to vary across repeated presentations of the signal. Thus it can be characterized by a so-called probability density function as is illustrated in figure 29.27. Another density function characterizes the values of the evidence variable upon presentation of a background stimulus. When the signals are similar to the background stimuli, the functions will overlap, so that a certain value of the evidence variable can originate either from a signal or from a background stimulus. The particular shape of the density functions of figure 29.27  is not essential for the argument.

Figure 29.27 Thresholds and discriminability

The detection response of the observer is based on the evidence variable. It is assumed that a threshold is set so that a detection response is given whenever the value of the evidence variable is above the threshold. As is illustrated in figure 29.27 , the areas under the density functions to the right of the threshold correspond to the probabilities of hits and false alarms. In practice, estimates of the separation of the two functions and the location of the threshold can be derived. The separation of the two density functions characterizes the discriminability of the target stimuli from the background stimuli, while the location of the threshold characterizes the observer’s strategy. Variation of the threshold produces a joint variation of the proportions of hits and false alarms. With a high threshold, the proportions of hits and false alarms will be small, while with a low threshold the proportions will be large. Thus, selection of a strategy (placement of the threshold) essentially is the selection of a certain combination of hit rate and false-alarm rate among the combinations that are possible for a certain discriminability.

Two major factors that influence the location of the threshold are payoffs and signal frequency. The threshold will be set to lower values when there is much to gain from a hit and little to lose from a false alarm, and it will be set to higher values when false alarms are costly and the benefits from hits are small. A low threshold setting can also be induced by a high proportion of signals, while a low proportion of signals tends to induce higher threshold settings. The effect of signal frequency on threshold settings is a major factor for the low overall performance in terms of the proportion of hits in vigilance tasks and for the vigilance decrement.

An account of the vigilance decrement in terms of strategic changes (threshold changes) requires that the reduction of the proportion of hits in the course of the watch is accompanied by a reduction of the proportion of false alarms. This is, in fact, the case in many studies, and it is likely that the overall poor performance in vigilance tasks (in comparison with the optimal situation) does also result, at least partly, from a threshold adjustment. In the course of a watch the relative frequency of detection responses comes to match the relative frequency of targets, and this adjustment implies a high threshold with a relatively small proportion of hits and a relatively small proportion of false alarms as well. Nevertheless there are vigilance decrements that result from changes in discriminability rather than from changes in threshold settings. These have been observed mainly in successive-discrimination tasks with a relatively high rate of stimulus events.

Nonstrategic processes in vigilance tasks

Although part of the overall poor performance in vigilance tasks and many instances of the vigilance decrement can be accounted for in terms of strategic adjustments of the detection threshold to low signal rates, such an account is not complete. There are changes in the observer during a watch that can reduce the discriminability of stimuli or result in apparent threshold shifts that cannot be considered as adaptation to the task characteristics. In the more than 40 years of vigilance research a number of nonstrategic factors that contribute to poor overall performance and to the vigilance decrement have been identified.

A correct response to a target in a vigilance task requires a sufficiently precise sensory registration, an appropriate threshold location, and a link between the perceptual processes and the associated response-related processes. During the watch the observers have to maintain a certain task set, a certain readiness to respond to target stimuli in a certain way. This is a nontrivial requirement, because without a particular task set no observer would respond to target stimuli in the way required. Two major sources of failures are thus inaccurate sensory registration and lapses in the readiness to respond to target stimuli. Major hypotheses to account for such failures will be briefly reviewed.

Detection and identification of a stimulus are faster when there is no temporal or spatial uncertainty about its appearance. Temporal and/or spatial uncertainty is likely to reduce vigilance performance. This is the essential prediction of expectancy theory. Optimal preparedness of the observer requires temporal and spatial certainty; obviously vigilance tasks are less than optimal in this respect. Although the major focus of expectancy theory is on the overall low performance, it can also serve to account for parts of the vigilance decrement. With infrequent signals at random intervals, high levels of preparedness might initially exist at times when no signal is presented; in addition, signals will be presented at low levels of preparedness. This discourages occasional high levels of preparedness in general so that whatever benefits accrue from them will vanish in the course of a watch.

Expectancy theory has a close relation to attentional theories. Variants of attentional theories of vigilance, of course, are related to dominant theories of attention in general. Consider a view of attention as “selection for processing” or “selection for action”. According to this view, stimuli are selected from the environment and processed with high efficiency whenever they serve the currently dominant action plan or task set. As already said, selection will benefit from precise expectations about when and where such stimuli will occur. But stimuli will only be selected if the action plan—the task set—is active. (Drivers of cars, for example, respond to traffic lights, other traffic, etc.; passengers don’t do so normally, although both are in almost the same situation. The critical difference is that between the task sets of the two: only the driver’s task set requires responses to traffic lights.)

Selection of stimuli for processing will suffer when the action plan is temporarily deactivated, that is, when the task set is temporarily absent. Vigilance tasks embody a number of features that discourage continuous maintenance of the task set, like short cycle times for processing stimuli, lack of feedback and little motivational challenge by apparent task difficulty. So-called blockings can be observed in almost all simple cognitive tasks with short cycle times like simple mental arithmetic or rapid serial responses to simple signals. Similar blockings occur in the maintenance of the task set in a vigilance task as well. They are not immediately recognizable as delayed responses because responses are infrequent and targets that are presented during a period of absent task set may no longer be there when the absence is over, so that a miss will be observed instead of a delayed response. Blockings become more frequent with time spent on task. This can give rise to the vigilance decrement. There may be additional reasons for temporary lapses in the availability of the appropriate task set, for example, distraction.

Certain stimuli are not selected in the service of the current action plan, but by virtue of their own characteristics. These are stimuli that are intense, novel, moving toward the observer, have an abrupt onset or for any other reason might require immediate action no matter what the current action plan of the observer is. There is little risk of not detecting such stimuli. They attract attention automatically, as is indicated, for example, by the orienting response, which includes a shift of the direction of the gaze toward the stimulus source. However, answering an alarm bell is not normally considered a vigilance task. In addition to stimuli that attract attention by their own characteristics, there are stimuli that are processed automatically as a consequence of practice. They seem to “pop out” from the environment. This kind of automatic processing requires extended practice with a so-called consistent mapping, that is, a consistent assignment of responses to stimuli. The vigilance decrement is likely to be small or even absent once automatic processing of stimuli has been developed.

Finally, vigilance performance suffers from a lack of arousal. This concept refers in a rather global manner to the intensity of neural activity, ranging from sleep through normal wakefulness to high excitement. One of the factors that is thought to affect arousal is external stimulation, and this is fairly low and uniform in most vigilance tasks. Thus, the intensity of central nervous system activity can decline overall over the course of a watch. An important aspect of arousal theory is that it links vigilance performance to various task-unrelated situational factors and factors related to the organism.

The Influence of Situational and Organismic Factors

Low arousal contributes to poor performance in vigilance tasks. Thus performance can be enhanced by situational factors that tend to enhance arousal, and it can be reduced by all measures that reduce the level of arousal. On balance, this generalization is mostly correct for the overall performance level in vigilance tasks, but the effects on the vigilance decrement are absent or less reliably observed across different kinds of manipulation of arousal.

One way to raise the level of arousal is the introduction of additional noise. However, the vigilance decrement is generally unaffected, and with respect to overall performance the results are inconsistent: enhanced, unchanged and reduced performance levels have all been observed. Perhaps the complex nature of noise is relevant. For example, it can be affectively neutral or annoying; it cannot only be arousing, but also be distracting. More consistent are the effects of sleep deprivation, which is “de-arousing”. It generally reduces vigilance performance and has sometimes been seen to enhance the vigilance decrement. Appropriate changes of vigilance performance have also been observed with depressant drugs like benzodiazepines or alcohol and stimulant drugs like amphetamine, caffeine or nicotine.

Individual differences are a conspicuous feature of performance in vigilance tasks. Although individual differences are not consistent across all sorts of vigilance tasks, they are fairly consistent across similar ones. There is only little or no effect of sex and general intelligence. With respect to age, vigilance performance increases during childhood and tends to decline beyond the age of sixty. In addition there is a good chance that introverts will show better performance than extroverts.

The Enhancement of Vigilance Performance

The existing theories and data suggest some means to enhance vigilance performance. Depending on the amount of specificity of the suggestions, it is not difficult to compile lists of various lengths. Some rather broad suggestions are given below that have to be fitted to specific task requirements. They are related to the ease of perceptual discriminations, the appropriate strategic adjustments, the reduction of uncertainty, the avoidance of the effects of attentional lapses and the maintenance of arousal.

Vigilance tasks require discriminations under non-optimal conditions. Thus one is well advised in making the discriminations as easy as possible, or the signals as conspicuous as possible. Measures related to this general goal can be straightforward (like appropriate lighting or longer inspection times per product) or more sophisticated, including special devices to enhance the conspicuousness of targets. Simultaneous comparisons are easier than successive ones, so the availability of a reference standard can be helpful. By means of technical devices it is sometimes possible to present the standard and the object to be examined in rapid alternation, so that differences will appear as motions in the display or other changes for which the visual system is particularly sensitive.

To counteract the strategic changes of the threshold that lead to a relatively low proportion of correct detections of targets (and for making the task less boring in terms of the frequency of actions to be taken) the suggestion has been made to introduce fake targets. However, this seems not to be a good recommendation. Fake targets will increase the proportion of hits overall, but at the cost of more frequent false alarms. In addition, the proportion of undetected targets among all stimuli that are not responded to (the outgoing faulty material in an industrial inspection task) will not necessarily be reduced. Better suited seems to be explicit knowledge about the relative importance of hits and false alarms and perhaps other measures to obtain an appropriate placement of the threshold for deciding between “good” and “bad”.

Temporal and spatial uncertainty are important determinants of poor vigilance performance. For some tasks spatial uncertainty can be reduced by way of defining a certain position of the object to be inspected. However, little can be done about temporal uncertainty: the observer would be unnecessary in a vigilance task if the occurrence of a target could be signalled in advance of its presentation. One thing that can be done in principle, however, is to mix objects to be inspected if faults tend to occur in bunches; this serves to avoid very long intervals without targets as well as very short intervals.

There are some obvious suggestions for the reduction of attentional lapses or at least their impact on performance. By proper training, some kind of automatic processing of targets can perhaps be obtained provided that the background and target stimuli are not too variable. The requirement for a sustained maintenance of the task set can be avoided by means of frequent short breaks, job rotation, job enlargement or job enrichment. Introduction of variety can be as simple as having the inspector himself or herself getting the material to be inspected from a box or other location. This also introduces self-pacing, which may help in avoiding signal presentations during temporary deactivations of the task set. Sustained maintenance of task set can be supported by means of feedback, indicated interest by supervisors and operator’s awareness of the importance of the task. Of course, accurate feedback of performance level is not possible in typical vigilance tasks; however, even inaccurate or incomplete feedback can be helpful as far as the observer’s motivation is concerned.

There are some measures that can be taken to maintain a sufficient level of arousal. Continuous use of drugs may exist in practice, but is never found among recommendations. Some background music can be useful, but can also have an opposite effect. Social isolation during vigilance tasks should mostly be avoided, and during times of day with low levels of arousal like the late hours of the night, supportive measures such as short watches are particularly important.


Peter Richter

Mental strain is a normal consequence of the coping process with mental workload (MWL). Long-term load or a high intensity of job demands can result in short-term consequences of overload (fatigue) and underload (monotony, satiation) and in long-term consequences (e.g., stress symptoms and work-related diseases). The maintenance of the stable regulation of actions while under strain can be realized through changes in one’s action style (by variation of strategies of information-seeking and decision-making), in the lowering of the level of need for achievement (by redefinition of tasks and reduction of quality standards) and by means of a compensatory increase of psychophysiological effort and afterwards a decrease of effort during work time.

This understanding of the process of mental strain can be conceptualized as a transactional process of action regulation during the imposition of loading factors which include not only the negative components of the strain process but also the positive aspects of learning such as accretion, tuning and restructuring and motivation (see figure 29.28).

Figure 29.28 Components of the process of strain and its consequences

Mental fatigue can be defined as a process of time-reversible decrement of behavioural stability in performance, mood and activity after prolonged working time. This state is temporarily reversible by changing the work demands, the environmental influences or stimulation and is completely reversible by means of sleep.

Mental fatigue is a consequence of performing tasks with a high level of difficulty that involve predominantly information processing and/or are of protracted duration. In contrast with monotony, the recovery of the decrements is time-consuming and does not occur suddenly after changing task conditions. Symptoms of fatigue are identified on several levels of behavioural regulation: dis-regulation in the biological homeostasis between environment and organism, dis-regulation in the cognitive processes of goal-directed actions and loss of stability in goal-oriented motivation and achievement level.

Symptoms of mental fatigue can be identified in all subsystems of the human information processing system:

·     perception: reduced eye movements, reduced discrimination of signals, threshold deterioration

·     information processing: extension of decision time, action slips, decision uncertainty, blockings, “risky strategies” in action sequences, disturbances in sensorimotor coordination of movements

·     memory functions: prolongation of information in ultrashort-term storages, disturbances in the rehearsal processes in short-term memory, delay in information transmission in long-term memory and in memory searching processes.

Differential Diagnostic of Mental Fatigue

Sufficient criteria exist to differentiate amongst menta fatigue, monotony, mental satiation and stress (in a narrow sense) (table 29.4).

Table 29.4 Differenting among several negative consequences of mental strain


Mental fatigue




Key condition

Poor fit in terms of overload preconditions

Poor fit in terms of underload preconditions

Loss of perceived sense of tasks

Goals perceived as threatening


Tiredness without boredom exhaustion

Tiredness with boredom


Anxiety, threat aversion

Emotional evaluation



Increased affective aversion

Increased anxiety


Continuously decreased

Not continuously decreased





Suddenly after task alternation


Long-term disturbances in recovery


Task design training, short-break system

Enrichment of job content

Goal-setting programmes and job enrichment

Job redesign, conflict and stress management

Degrees of Mental Fatigue

The well-described phenomenology of mental fatigue (Schmidtke 1965), many valid methods of assessment and the great amount of experimental and field results offer the possibility of an ordinal scaling of degrees of mental fatigue (Hacker and Richter 1994). The scaling is based on the individual’s capacity to cope with behavioural decrements:

Level 1: Optimal and efficient performance: no symptoms of decrement in performance, mood and activation level.

Level 2: Complete compensation characterized by increased peripheral psycho-physiological activation (e.g., as measured by electromyogram of finger muscles), perceived increase of mental effort, increased variability in performance criteria.

Level 3: Labile compensation additional to that described in level 2: action slips, perceived fatigue, increasing (compensatory) psycho-physiological activity in central indicators, heart rate, blood pressure.

Level 4: Reduced efficiency additional to that described in level 3: decrease of performance criteria.

Level 5: Yet further functional disturbances: disturbances in social relationships and cooperation at workplace; symptoms of clinical fatigue like loss of sleep quality and vital exhaustion.

Prevention of Mental Fatigue

The design of task structures, environment, rest periods during working time and sufficient sleep are the ways to reduce symptoms of mental fatigue in order that no clinical consequences will occur:

1.     Changes in the structure of tasks. Designing of preconditions for adequate learning and task structuring is not only a means of furthering the development of efficient job structures, but is also essential for the prevention of a misfit in terms of mental overload or underload:

·     Information processing burdens can be relieved by developing efficient internal task representations and organization of information. The resulting enlargement of cognitive capacity will match information needs and resources more aptly.

·     Human-centred technologies with high compatibility between the order of information as it is presented and the required task (Norman 1993) will reduce the mental effort necessary for information recoding and, in consequence, relieve symptoms of fatigue and stress.

·     Well-balanced coordination of different levels of regulations (as they apply to skills, rules and knowledge) may reduce effort and, moreover, increase human reliability (Rasmussen 1983).

·     Training workers in goal-directed action sequences in advance of actual problems will lighten their sense of mental effort by making their jobs clearer, more predictable and more evidently under their control. Their psychophysiological activation level will be effectively reduced.

2.     Introduction of systems of short-term breaks during work. The positive effects of such breaks depend on the observance of some preconditions. More short breaks are more efficient than fewer long breaks; effects depend on a fixed and therefore anticipatable time schedule; and the content of the breaks should have a compensatory function to the physical and mental job demands.

3.     Sufficient relaxation and sleep. Special employee-assistant programmes and stress-management techniques may support the ability of relaxation and the prevention of the development of chronicle fatigue (Sethi, Caro and Schuler 1987).


Eberhard Ulich and Gudela Grote

Design of Production Systems

Many companies invest millions in computer-supported production systems and at the same time do not make full use of their human resources, whose value can be significantly increased through investments in training. In fact, the use of qualified employee potential instead of highly complex automation can not only, in certain circumstances, significantly reduce investment costs, it can also greatly increase flexibility and system capability.

Causes of Inefficient Use of Technology

The improvements which investments in modern technology are intended to make are frequently not even approximately achieved (Strohm, Kuark and Schilling 1993; Ulich 1994). The most important reasons for this are due to problems in the areas of technology, organization and employee qualifications.

Three main causes can be identified for problems with technology:

1.     Insufficient technology. Because of the rapidity of technological changes, new technology reaching the market has sometimes undergone inadequate continuous usability tests, and unplanned downtime can result.

2.     Unsuitable technology. Technology developed for large companies is often not suitable for smaller companies. When a small firm introduces a production planning and control system developed for a large company, it may deprive itself of the flexibility necessary for its success or even survival.

3.     Excessively complex technology. When designers and developers use their entire planning knowledge to realize what is technically feasible without taking into account the experience of those involved in production, the result can be complex automated systems which are no longer easy to master.

Problems with organization are primarily attributable to continuous attempts at implementing the latest technology in unsuitable organizational structures. For instance, it makes little sense to introduce third, fourth and fifth generation computers into second generation organizations. But this is exactly what many companies do (Savage and Appleton 1988). In many companies, a radical restructuring of the organization is a precondition for the successful use of new technology. This particularly includes an examination of the concepts of production planning and control. Ultimately, local self-control by qualified operators can in certain circumstances be significantly more efficient and economical than a technically highly developed production planning and control system.

Problems with the qualifications of employees primarily arise because a large number of companies do not recognize the need for qualification measures in conjunction with the introduction of computer-supported production systems. In addition, training is too frequently regarded as a cost factor to be controlled and minimized, rather than as a strategic investment. In fact, system downtime and the resulting costs can often be effectively reduced by allowing faults to be diagnosed and remedied on the basis of operators’ competence and system-specific knowledge and experience. This is particularly the case in tightly coupled production facilities (Köhler et al. 1989). The same applies to introducing new products or product variants. Many examples of inefficient excessive technology use testify to such relationships.

The consequence of the analysis briefly presented here is that the introduction of computer-supported production systems only promises success if it is integrated into an overall concept which seeks to jointly optimize the use of technology, the structure of the organization and the enhancement of staff qualifications.

From the Task to the Design of Socio-Technical Systems

Work-related psychological concepts of production design are based on the primacy of  the task. On the one hand, the task forms the interface between individual and organization (Volpert 1987). On the other hand, the task links the social subsystem with the technical subsystem. “The task must be the point of articulation between the social and technical system—linking the job in the technical system with its correlated role behaviour, in the social system” (Blumberg 1988).

This means that a socio-technical system, for example a production island, is primarily defined by the task which it has to perform. The distribution of work between human and machine plays a central role, because it decides whether the person “functions” as the long arm of the machine with a function leftover in an automation “gap” or whether the machine functions as the long arm of the person, with a tool function supporting human capabilities and competence. We refer to these opposing positions as “technology-oriented” and “work-oriented” (Ulich 1994).

The Concept of Complete Task

The principle of complete activity (Hacker 1986) or complete task plays a central role in work-related psychological concepts for defining work tasks and for dividing up tasks between human and machine. Complete tasks are those “over which the individual has considerable personal control” and that “induce strong forces within the individual to complete or to continue them”. Complete tasks contribute to the “development of what has been described ... as ‘task orientation’—that is, a state of affairs in which the individual’s interest is aroused, engaged and directed by the character of the task” (Emery 1959). Figure 29.29  summarizes characteristics of completeness which must be taken into account for measures geared towards work-oriented design of production systems.

Figure 29.29 Characteristics of complete tasks

Illustrations of concrete consequences for production design arising from the principle of the complete task are the following:

1.     The independent setting of objectives, which can be incorporated into higher-order goals, requires turning away from central planning and control in favour of decentralized shop-floor control, which provides the possibility of making self-determined decisions within defined periods of time.

2.     Self-determined preparation for action, in the sense of carrying out planning functions, requires the integration of work preparation tasks on the shop-floor.

3.     Selecting methods means, for example, allowing a designer to decide whether he or she wishes to use the drawing board instead of an automated system (such as a CAD application) to perform certain subtasks, provided that it is ensured that data required for other parts of the process are entered in the system.

4.     Performance functions with process feedback for correcting actions where appropriate require in the case of encapsulated work processes “windows to the process” which help to minimize process distance.

5.     Action control with feedback of results means that shop-floor workers take on the function of quality inspection and control.

These indications of the consequences arising from realizing the principle of the complete task make two things clear: (1) in many cases—probably even the majority of cases—complete tasks in the sense described in figure 29.29  can only be structured as group tasks on account of the resulting complexity and the associated scope; (2) restructuring of work tasks—particularly when it is linked to introducing group work—requires their integration into a comprehensive restructuring concept which covers all levels of the company.

The structural principles which apply to the various levels are summarized in table 29.5 .

Table 29.5 Work-oriented principles for production structuring

Organizational level

Structural principle



Organizational unit

Functional integration




Skilled production work1

1 Taking into account the principle of differential work design.

Source: Ulich 1994.

Possibilities for realizing the principles for production structuring outlined in table 29.5 are illustrated by the proposal for restructuring a production company shown in figure 29.30 . This proposal, which was unanimously approved both by those responsible for production and by the project group formed for the purpose of restructuring, also demonstrates a fundamental turning away from Tayloristic concepts of labour and authority divisions. The examples of many companies show that the restructuring of work and organization structures on the basis of such models is able to meet both work psychological criteria of promoting health and personality development and the demand for long-term economic efficiency (see Ulich 1994).

Figure 29.30 Proposal for restructuring a production company

The line of argument favoured here—only very briefly outlined for reasons of space—seeks to make three things clear:

1.     Concepts like the ones mentioned here represent an alternative to “lean production” in the sense described by Womack, Jones and Roos (1990). While in the latter approach “every free space is removed” and extreme breaking down of work activities in the Tayloristic sense is maintained, in the approach being advanced in these pages, complete tasks in groups with wide-ranging self-regulation play a central role.

2.     Classical career paths for skilled workers are modified and in some cases precluded by the necessary realization of the functional integration principle, that is, with the reintegration on the shop-floor of what are known as indirectly productive functions, such as shop-floor work preparation, maintenance, quality control and so forth. This requires a fundamental reorientation in the sense of replacing the traditional career culture with a competence culture.

3.     Concepts such as those mentioned here mean a fundamental change to corporate power structures which must find their counterpart in the development of corresponding possibilities for participation.

Workers’ Participation

In the previous sections types of work organization were described that have as one basic characteristic the democratization at lower levels of an organization’s hierarchy through increased autonomy and decision latitude regarding work content as well as working conditions on the shop-floor. In this section, democratization is approached from a different angle by looking at participative decision-making in general. First, a definitional framework for participation is presented, followed by a discussion of research on the effects of participation. Finally, participative systems design is looked at in some detail.

Definitional framework for participation

Organizational development, leadership, systems design, and labour relations are examples of the variety of tasks and contexts where participation is considered relevant. A common denominator which can be regarded as the core of participation is the opportunity for individuals and groups to promote their interests through influencing the choice between alternative actions in a given situation (Wilpert 1989). In order to describe participation in more detail, a number of dimensions are necessary, however. Frequently suggested dimensions are (a) formal-informal, (b) direct-indirect, (c) degree of influence and (d) content of decision (e.g., Dachler and Wilpert 1978; Locke and Schweiger 1979). Formal participation refers to participation within legally or otherwise prescribed rules (e.g., bargaining procedures, guidelines for project management), while informal participation is based on non-prescribed exchanges, for example, between supervisor and subordinate. Direct participation allows for direct influence by the individuals concerned, whereas indirect participation functions through a system of representation. Degree of influence is usually described by means of a scale ranging from “no information to employees about a decision”, through “advance information to employees” and “consultation with employees” to “common decision of all parties involved”. As regards the giving of advance information without any consultation or common decision-making, some authors argue that this is not a low level of participation at all, but merely a form of “pseudo-participation” (Wall and Lischeron 1977). Finally, the content area for participative decision-making can be specified, for example, technological or organizational change, labour relations, or day-to-day operational decisions.

A classification scheme quite different from those derived from the dimensions presented so far was developed by Hornby and Clegg (1992). Based on work by Wall and Lischeron (1977), they distinguish three aspects of participative processes:

1.     the types and levels of interactions between the parties involved in a decision

2.     the flow of information between the participants

3.     the nature and degree of influence the parties exert on each other.

They then used these aspects to complement a framework suggested by Gowler and Legge (1978), which describes participation as a function of two organizational variables, namely, type of structure (mechanistic versus organic) and type of process (stable versus unstable). As this model includes a number of assumptions about participation and its relationship to organization, it cannot be used to classify general types of participation. It is presented here as one attempt to define participation in a broader context (see table 29.6). (In the last section of this article, Hornby and Clegg’s study (1992) will be discussed, which also aimed at testing the model’s assumptions.)

Table 29.6 Participation in organizational context


Organizational structure


Organizational processes







Interaction: vertical/command

Interaction: lateral/consultative


Information flow: non-reciprocal

Information flow: reciprocal


Influence: asymmetrical

Influence: asymmetrical





Interaction: ritualistic/random

Interaction: intensive/random


Information flow: non-reciprocal/sporadic

Information flow: reciprocal/interrogative


Influence: authoritarian

Influence: paternalistic

Source: Adapted from Hornby and Clegg 1992.

An important dimension usually not included in classifications for participation is the organizational goal behind choosing a participative strategy (Dachler and Wilpert 1978). Most fundamentally, participation can take place in order to comply with a democratic norm, irrespective of its influence on the effectiveness of the decision-making process and the quality of the decision outcome and implementation. On the other hand, a participative procedure can be chosen to benefit from the knowledge and experience of the individuals involved or to ensure acceptance of a decision. Often it is difficult to identify the objectives behind choosing a participative approach to a decision and often several objectives will be found at the same time, so that this dimension cannot be easily used to classify participation. However, for understanding participative processes it is an important dimension to keep in mind.

Research on the effects of participation

A widely shared assumption holds that satisfaction as well as productivity gains can be achieved by providing the opportunity for direct participation in decision-making. Overall, research has supported this assumption, but the evidence is not unequivocal and many of the studies have been criticized on theoretical and methodological grounds (Cotton et al. 1988; Locke and Schweiger 1979; Wall and Lischeron 1977). Cotton et al. (1988) argued that inconsistent findings are due to differences in the form of participation studied; for instance, informal participation and employee ownership are associated with high productivity and satisfaction whereas short-term participation is ineffective in both respects. Although their conclusions were strongly criticized (Leana, Locke and Schweiger 1990), there is agreement that participation research is generally characterized by a number of deficiencies, ranging from conceptual problems like those mentioned by Cotton et al. (1988) to methodological issues like variations in results based on different operationalizations of the dependent variables (e.g., Wagner and Gooding 1987).

To exemplify the difficulties of participation research, the classic study by Coch and French (1948) is briefly described, followed by the critique of Bartlem and Locke (1981). The focus of the former study was overcoming resistance to change by means of participation. Operators in a textile plant where frequent transfers between work tasks occurred were given the opportunity to participate in the design of their new jobs to varying degrees. One group of operators participated in the decisions (detailed working procedures for new jobs and piece rates) through chosen representatives, that is, several operators of their group. In two smaller groups, all operators participated in those decisions and a fourth group served as control with no participation allowed. Previously it had been found in the plant that most operators resented being transferred and were slower in relearning their new jobs as compared with learning their first job in the plant and that absenteeism and turnover among transferred operators was higher than among operators not recently transferred.

This occurred despite the fact that a transfer bonus was given to compensate for the initial loss in piece-rate earnings after a transfer to a new job. Comparing the three experimental conditions it was found that the group with no participation remained at a low level of production—which had been set as the group standard—for the first month after the transfer, while the groups with full participation recovered to their former productivity within a few days and even exceeded it at the end of the month. The third group that participated through chosen representatives did not recover as fast, but showed their old productivity after a month. (They also had insufficient material to work on for the first week, however.) No turnover occurred in the groups with participation and little aggression towards management was observed. The turnover in the participation group without participation was 17% and the attitude towards management was generally hostile. The group with no participation was broken up after one month and brought together again after another two and one-half months to work on a new job, and this time they were given the opportunity to participate in the design of their job. They then showed the same pattern of recovery and increased productivity as the groups with participation in the first experiment. The results were explained by Coch and French on the basis of a general model of resistance to change derived from work by Lewin (1951, see below).

Bartlem and Locke (1981) argued that these findings could not be interpreted as support for the positive effects of participation because there were important differences between the groups as regards the explanation of the need for changes in the introductory meetings with management, the amount of training received, the way the time studies were carried out to set the piece rate, the amount of work available and group size. They assumed that perceived fairness of pay rates and general trust in management contributed to the better performance of the participation groups, not participation per se.

In addition to the problems associated with research on the effects of participation, very little is known about the processes that lead to these effects (e.g., Wilpert 1989). In a longitudinal study on the effects of participative job design, Baitsch (1985) described in detail processes of competence development in a number of shop-floor employees. His study can be linked to Deci’s (1975) theory of intrinsic motivation based on the need for being competent and self-determining. A theoretical framework focusing on the effects of participation on the resistance to change was suggested by Lewin (1951) who argued that social systems gain a quasi-stationary equilibrium which is disturbed by any attempt at change. For the change to be successfully carried through, forces in favour of the change must be stronger than the resisting forces. Participation helps in reducing the resisting forces as well as in increasing the driving forces because reasons for resistance can be openly discussed and dealt with, and individual concerns and needs can be integrated into the proposed change. Additionally, Lewin assumed that common decisions resulting from participatory change processes provide the link between the motivation for change and the actual changes in behaviour.

Participation in systems design

Given the—albeit not completely consistent—empirical support for the effectiveness of participation, as well as its ethical underpinnings in industrial democracy, there is widespread agreement that for the purposes of systems design a participative strategy should be followed (Greenbaum and Kyng 1991; Majchrzak 1988; Scarbrough and Corbett 1992). Additionally, a number of case studies on participative design processes have demonstrated the specific advantages of participation in systems design, for example, regarding the quality of the resulting design, user satisfaction, and acceptance (i.e., actual use) of the new system (Mumford and Henshall 1979; Spinas 1989; Ulich et al. 1991).

The important question then is not the if, but the how of participation. Scarbrough and Corbett (1992) provided an overview of various types of participation in the various stages of the design process (see table 29.7). As they point out, user involvement in the actual design of technology is rather rare and often does not extend beyond information distribution. Participation mostly occurs in the latter stages of implementation and optimization of the technical system and during the development of socio-technical design options, that is, options of organizational and job design in combination with options for the use of the technical system.

Table 29.7 User participation in the technology process

Phases of technology process

Type of participation





Trade union consultation

User redesign





New technology agreements

Skills bargaining


Collective bargaining



User cooperation


Job design

Information job redesign and work practices


Quality circles


Adapted from Scarbrough and Corbett 1992.

Besides resistance in managers and engineers to the involvement of users in the design of technical systems and potential restrictions embedded in the formal participation structure of a company, an important difficulty concerns the need for methods that allow the discussion and evaluation of systems that do not yet exist (Grote 1994). In software development, usability labs can help to overcome this difficulty as they provide an opportunity for early testing by future users.

In looking at the process of systems design, including participative processes, Hirschheim and Klein (1989) have stressed the effects of implicit and explicit assumptions of system developers and managers about basic topics such as the nature of social organization, the nature of technology and their own role in the development process. Whether system designers see themselves as experts, catalysts or emancipators will greatly influence the design and implementation process. Also, as mentioned before, the broader organizational context in which participative design takes place has to be taken into account. Hornby and Clegg (1992) provided some evidence for the relationship between general organizational characteristics and the form of participation chosen (or, more precisely, the form evolving in the course of system design and implementation). They studied the introduction of an information system which was carried out within a participative project structure and with explicit commitment to user participation. However, users reported that they had had little information about the changes supposed to take place and low levels of influence over system design and related questions like job design and job security. This finding was interpreted in terms of the mechanistic structure and unstable processes of the organization that fostered “arbitrary” participation instead of the desired open participation (see table 29.6).

In conclusion, there is sufficient evidence demonstrating the benefits of participative change strategies. However, much still needs to be learned about the underlying processes and influencing factors that bring about, moderate or prevent these positive effects.


Kazutaka Kogi

Healthy individuals regularly sleep for several hours every day. Normally they sleep during the night hours. They find it most difficult to remain awake during the hours between midnight and early morning, when they normally sleep. If an individual has to remain awake during these hours either totally or partially, the individual comes to a state of forced sleep loss, or sleep deprivation, that is usually perceived as tiredness. A need for sleep, with fluctuating degrees of sleepiness, is felt which continues until sufficient sleep is taken. This is the reason why periods of sleep deprivation are often said to cause a person to incur sleep deficit or sleep debt.

Sleep deprivation presents a particular problem for workers who cannot take sufficient sleep periods because of work schedules (e.g., working at night) or, for that matter, prolonged free-time activities. A worker on a night shift remains sleep-deprived until the opportunity for a sleep period becomes available at the end of the shift. Since sleep taken during daytime hours is usually shorter than needed, the worker cannot recover from the condition of sleep loss sufficiently until a long sleep period, most likely a night sleep, is taken. Until then, the person accumulates a sleep deficit. (A similar condition—jet lag—arises after travelling between time zones that differ by a few hours or more. The traveller tends to be sleep-deprived as the activity periods in the new time zone correspond more clearly to the normal sleep period in the originating place.) During the periods of sleep loss, workers feel tired and their performance is affected in various ways. Thus various degrees of sleep deprivation are incorporated into the daily life of workers having to work irregular hours and it is important to take measures to cope with unfavourable effects of such sleep deficit. The main conditions of irregular working hours that contribute to sleep deprivation are shown in table 29.8 .

Table 29.8 Main conditions of irregular working hours which contribute to sleep deprivation  of various degrees

Irregular working hours

Conditions leading to sleep deprivation

Night duty

No or shortened night-time sleep

Early morning or late evening duty

Shortened sleep, disrupted sleep

Long hours of work or working  two shifts together

Phase displacement of sleep

Straight night or early morning shifts

Consecutive phase displacement of sleep

Short between-shift period

Short and disrupted sleep

Long interval between days off

Accumulation of sleep shortages

Work in a different time zone

No or shortened sleep during the “night” hours in the originating place (jet lag)

Unbalanced free time periods

Phase displacement of sleep, short sleep

In extreme conditions, sleep deprivation may last for more than a day. Then sleepiness and performance changes increase as the period of sleep deprivation is prolonged. Workers, however, normally take some form of sleep before sleep deprivation becomes too protracted. If the sleep thus taken is not sufficient, the effects of sleep shortage still continue. Thus, it is important to know not only the effects of sleep deprivation in various forms but also the ways in which workers can recover from it.

The complex nature of sleep deprivation is shown by figure 29.31 , which depicts data from laboratory studies on the effects of two days of sleep deprivation (Fröberg 1985).

Figure 29.31 Perfomance, sleep ratings and physiological variables of a group of subjects  exposed to two nights of sleep deprivation

The data show three basic changes resulting from prolonged sleep deprivation:

1.     There is a general decreasing trend in both objective performance and subjective ratings of performance efficiency.

2.     The decline in performance is influenced by the time of day. This cycling decline is correlated with those physiological variables which have a circadian cycling period. Performance is better in the normal activity phase when, for example, adrenaline excretion and body temperature are higher than those in the period originally assigned to a normal night’s sleep, when the physiological measures are low.

3.     Self-ratings of sleepiness increase with time of continuous sleep deprivation, with a clear cyclic component associated with time of day.

The fact that the effects of sleep deprivation are correlated with physiological circadian rhythms helps us to understand its complex nature (Folkard and Akerstedt 1992). These effects should be viewed as a result of a phase shift of the sleep-wakefulness cycle in one’s daily life.

The effects of continuous work or sleep deprivation thus include not only a reduction in alertness but decreased performance capabilities, increased probability of falling asleep, lowered well-being and morale and impaired safety. When such periods of sleep deprivation are repeated, as in the case of shift workers, their health may be affected (Rutenfranz 1982; Koller 1983; Costa et al. 1990). An important aim of research is thus to determine to what extent sleep deprivation damages the well-being of individuals and how we can best use the recovery function of sleep in reducing such effects.

Effects of Sleep Deprivation

During and after a night of sleep deprivation, the physiological circadian rhythms of the human body seem to remain sustained. For example, the body temperature curve during the first day’s work among night-shift workers tends to keep its basic circadian pattern. During the night hours, the temperature declines towards early morning hours, rebounds to rise during the subsequent daytime and falls again after an afternoon peak. The physiological rhythms are known to get “adjusted” to the reversed sleep-wakefulness cycles of night-shift workers only gradually in the course of several days of repeated night shifts. This means that the effects on performance and sleepiness are more significant during night hours than in the daytime. The effects of sleep deprivation are therefore variably associated with the original circadian rhythms seen in physiological and psychological functions.

The effects of sleep deprivation on performance depend on the type of the task to be performed. Different characteristics of the task influence the effects (Fröberg 1985; Folkard and Monk 1985; Folkard and Akerstedt 1992). Generally, a complex task is more vulnerable than a simpler task. Performance of a task involving an increasing number of digits or a more complex coding deteriorates more during three days of sleep loss (Fröberg 1985; Wilkinson 1964). Paced tasks that need to be responded to within a certain interval deteriorate more than self-paced tasks. Practical examples of vulnerable tasks include serial reactions to defined stimulations, simple sorting operations, the recording of coded messages, copy typing, display monitoring and continuous inspection. Effects of sleep deprivation on strenuous physical performance are also known. Typical effects of prolonged sleep deprivation on performance (on a visual task) is shown in figure 29.32  (Dinges 1992). The effects are more pronounced after two nights of sleep loss (40-56 hours) than after one night of sleep loss (16-40 hours).

Figure 29.32 Regression lines fit to response speed (the reciprocal of response times)  on a 10-minute simple, unprepared visual task administered repeatedly  to healthy young adults during no sleep loss (5-16 hours),  one night of sleep loss (16-40 hours) and two nights of sleep loss (40-56 hours)

The degree to which the performance of tasks is affected also appears to depend on how it is influenced by the “masking” components of the circadian rhythms. For example, some measures of performance, such as five-target memory search tasks, are found to adjust to night work considerably more quickly than serial reaction time tasks, and hence they may be relatively unimpaired on rapidly rotating shift systems (Folkard et al. 1993). Such differences in the effects of endogenous physiological body clock rhythms and their masking components must be taken into account in considering the safety and accuracy of performance under the influence of sleep deprivation.

One particular effect of sleep deprivation on performance efficiency is the appearance of frequent “lapses” or periods of no response (Wilkinson 1964; Empson 1993). These performance lapses are short periods of lowered alertness or light sleep. This can be traced in records of videotaped performance, eye movements or electroencephalograms (EEGs). A prolonged task (one-half hour or more), especially when the task is replicated, can more easily lead to such lapses. Monotonous tasks such as repetitions of simple reactions or monitoring of infrequent signals are very sensitive in this regard. On the other hand, a novel task is less affected. Performance in changing work situations is also resistant.

While there is evidence of a gradual arousal decrease in sleep deprivation, one would expect less affected performance levels between lapses. This explains why results of some performance tests show little influence of sleep loss when the tests are done in a short period of time. In a simple reaction time task, lapses would lead to very long response times whereas the rest of the measured times would remain unchanged. Caution is thus needed in interpreting test results concerning sleep loss effects in actual situations.

Changes in sleepiness during sleep deprivation obviously relate to physiological circadian rhythms as well as to such lapse periods. Sleepiness sharply increases with time of the first period of night-shift work, but decreases during subsequent daytime hours. If sleep deprivation continues to the second night sleepiness becomes very advanced during the night hours (Costa et al. 1990; Matsumoto and Harada 1994). There are moments when the need for sleep is felt to be almost irresistible; these moments correspond to the appearance of lapses, as well as to the appearance of interruptions in the cerebral functions as evidenced by EEG records. After a while, sleepiness is felt to be reduced, but there follows another period of lapse effects. If workers are questioned about various fatigue feelings, however, they usually mention increasing levels of fatigue and general tiredness persisting throughout the sleep deprivation period and between-lapse periods. A slight recovery of subjective fatigue levels is seen during the daytime following a night of sleep deprivation, but fatigue feelings are remarkably advanced in the second and subsequent nights of continued sleep deprivation.

During sleep deprivation, sleep pressure from the interaction of prior wakefulness and circadian phase may always be present to some degree, but the lability of state in sleepy subjects is also modulated by context effects (Dinges 1992). Sleepiness is influenced by the amount and type of stimulation, the interest afforded by the environment and the meaning of the stimulation to the subject. Monotonous stimulation or that requiring sustained attention can more easily lead to vigilance decrement and lapses. The greater the physiological sleepiness due to sleep loss, the more the subject is vulnerable to environmental monotony. Motivation and incentive can help override this environmental effect, but only for a limited period.

Effects of Partial Sleep Deprivation and Accumulated Sleep Shortages

If a subject works continuously for a whole night without sleep, many performance functions will have definitely deteriorated. If the subject goes to the second night shift without getting any sleep, the performance decline is far advanced. After the third or fourth night of total sleep deprivation, very few people can stay awake and perform tasks even if highly motivated. In actual life, however, such conditions of total sleep loss rarely occur. Usually people take some sleep during subsequent night shifts. But reports from various countries show that sleep taken during daytime is almost always insufficient to recover from the sleep debt incurred by night work (Knauth and Rutenfranz 1981; Kogi 1981; ILO 1990). As a result, sleep shortages accumulate as shift workers repeat night shifts. Similar sleep shortages also result when sleep periods are reduced on account of the need to follow shift schedules. Even if night sleep can be taken, sleep restriction of as little as two hours each night is known to lead to an insufficient amount of sleep for most persons. Such sleep reduction can lead to impaired performance and alertness (Monk 1991).

Examples of conditions in shift systems which contribute to accumulation of sleep shortages, or partial sleep deprivation, are given in table 29.8 . In addition to continued night work for two or more days, short between-shift periods, repetition of an early start of morning shifts, frequent night shifts and inappropriate holiday allotment accelerate the accumulation of sleep shortages.

The poor quality of daytime sleep or shortened sleep is important, too. Daytime sleep is accompanied by an increased frequency of awakenings, less deep and slow-wave sleep and a distribution of REM sleep different from that of normal night-time sleep (Torsvall, Akerstedt and Gillberg 1981; Folkard and Monk 1985; Empson 1993). Thus a daytime sleep may not be as sound as a night sleep even in a favourable environment.

This difficulty of taking good quality sleep due to different timing of sleep in a shift system is illustrated by figure 29.33  which shows the duration of sleep as a function of the time of sleep onset for German and Japanese workers based on diary records (Knauth and Rutenfranz 1981; Kogi 1985). Due to circadian influence, daytime sleep is forced to be short. Many workers may have split sleep during the daytime and often add some sleep in the evening where possible.

Figure 29.33 Mean sleep length as a function of the time of sleep onset.  Comparison of data from German and Japanese shift workers.

In real-life settings, shift workers take a variety of measures to cope with such accumulation of sleep shortages (Wedderburn 1991). For example, many of them try to sleep in advance before a night shift or have a long sleep after it. Although such efforts are by no means entirely effective to offset the effects of sleep deficit, they are made quite deliberately. Social and cultural activities may be restricted as part of coping measures. Outgoing free-time activities, for example, are undertaken less frequently between two night shifts. Sleep timing and duration as well as the actual accumulation of sleep deficit thus depend on both job-related and social circumstances.

Recovery from Sleep Deprivation and Health Measures

The only effective means of recovering from sleep deprivation is to sleep. This restorative effect of sleep is well known (Kogi 1982). As recovery by sleep may differ according to its timing and duration (Costa et al. 1990), it is essential to know when and for how long people should sleep. In normal daily life, it is always the best to take a full night’s sleep to accelerate the recovery from sleep deficit but efforts are usually made to minimize sleep deficit by taking sleep at different occasions as replacements of normal night sleeps of which one has been deprived. Aspects of such replacement sleeps are shown in table 29.9 .

Table 29.9 Aspects of advance, anchor & retard sleeps taken as replacement of normal night sleep


Advance sleep

Anchor sleep

Retard sleep


Before a night shift

Between night shifts

Before early morning work

Late evening naps

Intermittent night work

During a night shift

Alternate-day work

Prolonged freetime

Naps taken informally

After a night shift

Between night shifts

After prolonged evening work

Daytime naps


Usually short

Short by definition

Usually short but longer after late evening work


Longer latency of falling asleep

Poor mood on rising

Reduced REM sleep

Slow-wave sleep dependent on prior wakefulness

Short latency

Poor mood on rising

Sleep stages similar to initial part of a normal night sleep

Shorter latency for REM sleep

Increased awakenings

Increased REM sleep

Increased slow-wave sleep after long wakefulness

Interaction with circadian rhythms

Disrupted rhythms; relatively faster adjustment

Conducive to stabilizing original rhythms

Disrupted rhythms; slow adjustment

To offset night sleep deficit, the usual effort made is to take daytime sleep in “advance” and “retard” phases (i.e., before and after night-shift work). Such a sleep coincides with the circadian activity phase. Thus the sleep is characterized by longer latency, shortened slow-wave sleep, disrupted REM sleep and disturbances of one’s social life. Social and environmental factors are important in determining the recuperative effect of a sleep. That a complete conversion of circadian rhythms is impossible for a shift worker in a real-life situation should be borne in mind in considering the effectiveness of the recovery functions of sleep.

In this respect, interesting features of a short “anchor sleep” have been reported (Minors and Waterhouse 1981; Kogi 1982; Matsumoto and Harada 1994). When part of the customary daily sleep is taken during the normal night sleep period and the rest at irregular times, the circadian rhythms of rectal temperature and urinary secretion of several electrolytes can retain a 24-hour period. This means that a short night-time sleep taken during the night sleep period can help preserve the original circadian rhythms in subsequent periods.

We may assume that sleeps taken at different periods of the day could have certain complementary effects in view of the different recovery functions of these sleeps. An interesting approach for night-shift workers is the use of a night-time nap which usually lasts up to a few hours. Surveys show this short sleep taken during a night shift is common among some groups of workers. This anchor-sleep type sleep is effective in reducing night work fatigue (Kogi 1982) and may reduce the need of recovery sleep. Figure 29.34  compares the subjective feelings of fatigue during two consecutive night shifts and the off-duty recovery period between the nap-taking group and the non-nap group (Matsumoto and Harada 1994). The positive effects of a night-time nap in reducing fatigue was obvious. These effects continued for a large part of the recovery period following night work. Between these two groups, no significant difference was found upon comparing the length of the day sleep of the non-nap group with the total sleeping time (night-time nap plus subsequent day sleep) of the nap group. Therefore a night-time nap enables part of the essential sleep to be taken in advance of the day sleep following night work. It can therefore be suggested that naps taken during night work can to a certain extent aid recovery from the fatigue caused by that work and accompanying sleep deprivation (Sakai et al. 1984; Saito and Matsumoto 1988).

Figure 29.34 Mean scores for subjective feelings of  fatigue during two consecutive night shifts  and the off-duty recovery period for nap and no-nap groups

It must be admitted, however, that it is not possible to work out optimal strategies that each worker suffering from sleep deficit can apply. This is demonstrated in the development of international labour standards for night work that recommend a set of measures for workers doing frequent night work (Kogi and Thurman 1993). The varied nature of these measures and the trend towards increasing flexibility in shift systems clearly reflect an effort to develop flexible sleep strategies (Kogi 1991). Age, physical fitness, sleep habits and other individual differences in tolerance may play important roles (Folkard and Monk 1985; Costa et al. 1990; Härmä 1993). Increasing flexibility in work schedules in combination with better job design is useful in this regard (Kogi 1991).

Sleep strategies against sleep deprivation should be dependent on type of working life and be flexible enough to meet individual situations (Knauth, Rohmert and Rutenfranz 1979; Rutenfranz, Knauth and Angersbach 1981; Wedderburn 1991; Monk 1991). A general conclusion is that we should minimize night sleep deprivation by selecting appropriate work schedules and facilitate recovery by encouraging individually suitable sleeps, including replacement sleeps and a sound night-time sleep in the early periods after sleep deprivation. It is important to prevent the accumulation of sleep deficit. The period of night work which deprives workers of sleep in the normal night sleep period should be as short as possible. Between-shift intervals should be long enough to allow a sleep of sufficient length. A better sleep environment and measures to cope with social needs are also useful. Thus, social support is essential in designing working time arrangements, job design and individual coping strategies in promoting the health of workers faced with frequent sleep deficit.


Roland Kadefors

An Integrated Approach in the Design of Workstations

In ergonomics, the design of workstations is a critical task. There is general agreement that in any work setting, whether blue-collar or white-collar, a well-designed workstation furthers not only the health and well-being of the workers, but also productivity and the quality of the products. Conversely, the poorly designed workstation is likely to cause or contribute to the development of health complaints or chronic occupational diseases, as well as to problems with keeping product quality and productivity at a prescribed level.

To every ergonomist, the above statement may seem trivial. It is also recognized by every ergonomist that working life worldwide is full of not only ergonomic shortcomings, but blatant violations of basic ergonomic principles. It is clearly evident that there is a widespread unawareness with respect to the importance of workstation design among those responsible: production engineers, supervisors and managers.

It is noteworthy that there is an international trend with respect to industrial work which would seem to underline the importance of ergonomic factors: the increasing demand for improved product quality, flexibility and product delivery precision. These demands are not compatible with a conservative view regarding the design of work and workplaces.

Although in the present context it is the physical factors of workplace design that are of chief concern, it should be borne in mind that the physical design of the workstation cannot in practice be separated from the organization of work. This principle will be made evident in the design process described in what follows. The quality of the end result of the process relies on three supports: ergonomic knowledge, integration with productivity and quality demands, and participation. The process of implementation of a new workstation must cater to this integration, and it is the main focus of this article.

Design considerations

Workstations are meant for work. It must be recognized that the point of departure in the workstation design process is that a certain production goal has to be achieved. The designer—often a production engineer or other person at middle-management level—develops internally a vision of the workplace, and starts to implement that vision through his or her planning media. The process is iterative: from a crude first attempt, the solutions become gradually more and more refined. It is essential that ergonomic aspects be taken into account in each iteration as the work progresses.

It should be noted that ergonomic design of workstations is closely related to ergonomic assessment of workstations. In fact, the structure to be followed here applies equally to the cases where the workstation already exists or when it is in a planning stage.

In the design process, there is a need for a structure which ensures that all relevant aspects be considered. The traditional way to handle this is to use checklists containing a series of those variables which should be taken into account. However, general purpose checklists tend to be voluminous and difficult to use, since in a particular design situation only a fraction of the checklist may be relevant. Furthermore, in a practical design situation, some variables stand out as being more important than others. A methodology to consider these factors jointly in a design situation is required. Such a methodology will be proposed in this article.

Recommendations for workstation design must be based on a relevant set of demands. It should be noted that it is in general not enough to take into account threshold limit values for individual variables. A recognized combined goal of productivity and conservation of health makes it necessary to be more ambitious than in a traditional design situation. In particular, the question of musculoskeletal complaints is a major aspect in many industrial situations, although this category of problems is by no means limited to the industrial environment.

A Workstation Design Process

Steps in the process

In the workstation design and implementation process, there is always an initial need to inform users and to organize the project so as to allow for full user participation and in order to increase the chance of full employee acceptance of the final result. A treatment of this goal is not within the scope of the present treatise, which concentrates on the problem of arriving at an optimal solution for the physical design of the workstation, but the design process nonetheless allows the integration of such a goal. In this process, the following steps should always be considered:

1.     collection of user-specified demands

2.     prioritizing of demands

3.     transfer of demands into (a) technical specifications and (b) specifications in user terms

4.     iterative development of the workstation’s physical layout

5.     physical implementation

6.     trial period of production

7.     full production

8.     evaluation and identification of rest problems.

The focus here is on steps one through five. Many times, only a subset of all these steps is actually included in the design of workstations. There may be various reasons for this. If the workstation is a standard design, such as in some VDU working situations, some steps may duly be excluded. However, in most cases the exclusion of some of the steps listed would lead to a workstation of lower quality than what can be considered acceptable. This can be the case when economic or time constraints are too severe, or when there is sheer neglect due to lack of knowledge or insight at management level.

Collection of user-specified demands

It is essential to identify the user of the workplace as any member of the production organization who may be able to contribute qualified views on its design. Users may include, for instance, the workers, the supervisors, the production planners and production engineers, as well as the safety steward. Experience shows clearly that these actors all have their unique knowledge which should be made use of in the process.

The collection of the user-specified demands should meet a number of criteria:

1.     Openness. There should be no filter applied in the initial stage of the process. All points of view should be noted without voiced criticism.

2.     Non-discrimination. Viewpoints from every category should be treated equally at this stage of the process. Special consideration should be given to the fact that some persons may be more outspoken than others, and that there is a risk that they may silence some of the other actors.

3.     Development through dialogue. There should be an opportunity to adjust and develop the demands through a dialogue between participants of different backgrounds. Prioritizing should be addressed as part of the process.

4.     Versatility. The process of collection of user-specified demands should be reasonably economical and not require the involvement of specialist consultants or extensive time demands on the part of the participants.

The above set of criteria may be met by using a methodology based on quality function deployment (QFD) according to Sullivan (1986). Here, the user demands may be collected in a session where a mixed group of actors (not more than eight to ten people) is present. All participants are given a pad of removable self-sticking notes. They are asked to write down all workplace demands which they find relevant, each one on a separate slip of paper. Aspects relating to work environment and safety, productivity and quality should be covered. This activity may continue for as long as found necessary, typically ten to fifteen minutes. After this session, one after the other of the participants is asked to read out his or her demands and to stick the notes on a board in the room where everyone in the group can see them. The demands are grouped into natural categories such as lighting, lifting aids, production equipment, reaching requirements and flexibility demands. After the completion of the round, the group is given the opportunity to discuss and to comment on the set of demands, one category at a time, with respect to relevance and priority.

The set of user-specified demands collected in a process such as the one described in the above forms one of the bases for the development of the demand specification. Additional information in the process may be produced by other categories of actors, for example, product designers, quality engineers, or economists; however, it is vital to realize the potential contribution that the users can make in this context.

Prioritizing and demand specification

With respect to the specification process, it is essential that the different types of demands be given consideration according to their respective importance; otherwise, all aspects that have been taken into account will have to be considered in parallel, which may tend to make the design situation complex and difficult to handle. This is why checklists, which need to be elaborate if they are to serve the purpose, tend to be difficult to manage in a particular design situation.

It may be difficult to devise a priority scheme which serves all types of workstations equally well. However, on the assumption that manual handling of materials, tools or products is an essential aspect of the work to be carried out in the workstation, there is a high probability that aspects associated with musculoskeletal load will be at the top of the priority list. The validity of this assumption may be checked in the user demand collection stage of the process. Relevant user demands may be, for instance, associated with muscular strain and fatigue, reaching, seeing, or ease of manipulation.

It is essential to realize that it may not be possible to transform all user-specified demands into technical demand specifications. Although such demands may relate to more subtle aspects such as comfort, they may nevertheless be of high relevance and should be considered in the process.

Musculoskeletal load variables

In line with the above reasoning, we shall here apply the view that there is a set of basic ergonomic variables relating to musculoskeletal load which need to be taken into account as a priority in the design process, in order to eliminate the risk of work-related musculosketal disorders (WRMDs). This type of disorder is a pain syndrome, localized in the musculoskeletal system, which develops over long periods of time as a result of repeated stresses on a particular body part (Putz-Anderson 1988). The essential variables are (e.g., Corlett 1988):

·     muscular force demand

·     working posture demand

·     time demand.

With respect to muscular force, criteria setting may be based on a combination of biomechanical, physiological and psychological factors. This is a variable that is operationalized through measurement of output force demands, in terms of handled mass or required force for, say, the operation of handles. Also, peak loads in connection with highly dynamic work may have to be taken into account.

Working posture demands may be evaluated by mapping (a) situations where the joint structures are stretched beyond the natural range of movement, and (b) certain particularly awkward situations, such as kneeling, twisting, or stooped postures, or work with the hand held above shoulder level.

Time demands may be evaluated on the basis of mapping (a) short-cycle, repetitive work, and (b) static work. It should be noted that static work evaluation may not exclusively concern maintaining a working posture or producing a constant output force over lengthy periods of time; from the point of view of the stabilizing muscles, particularly in the shoulder joint, seemingly dynamic work may have a static character. It may thus be necessary to consider lengthy periods of joint mobilization.

The acceptability of a situation is of course based in practice on the demands on the part of the body that is under the highest strain.

It is important to note that these variables should not be considered one at a time but jointly. For instance, high force demands may be acceptable if they occur only occasionally; lifting the arm above shoulder level once in a while is not normally a risk factor. But combinations among such basic variables must be considered. This tends to make criteria setting difficult and involved.

In the Revised NIOSH equation for the design and evaluation of manual handling tasks (Waters et al. 1993), this problem is addressed by devising an equation for recommended weight limits which takes into account the following mediating factors: horizontal distance, vertical lifting height, lifting asymmetry, handle coupling and lifting frequency. In this way, the 23-kilogram acceptable load limit based on biomechanical, physiological and psychological criteria under ideal conditions, may be modified substantially upon taking into account the specifics of the working situation. The NIOSH equation provides a base for evaluation of work and workplaces involving lifting tasks. However, there are severe limitations as to the usability of the NIOSH equation: for instance, only two-handed lifts may be analysed; scientific evidence for analysis of one-handed lifts is still inconclusive. This illustrates the problem of applying scientific evidence exclusively as a basis for work and workplace design: in practice, scientific evidence must be merged with educated views of persons who have direct or indirect experience of the type of work considered.

The cube model

Ergonomic evaluation of workplaces, taking into account the complex set of variables which need to be considered, is to a large extent a communications problem. Based on the prioritizing discussion described above, a cube model for ergonomic evaluation of workplaces was developed (Kadefors 1993). Here the prime goal was to develop a didactic tool for communication purposes, based on the assumption that output force, posture and time measures in a great majority of situations constitute interrelated, prioritized basic variables.

For each one of the basic variables, it is recognized that the demands may be grouped with respect to severity. Here, it is proposed that such a grouping may be made in three classes: (1) low demands, (2) medium demands or (3) high demands. The demand levels may be set either by using whatever scientific evidence is available or by taking a consensus approach with a panel of users. These two alternatives are of course not mutually exclusive, and may well entail similar results, but probably with different degrees of generality.

As noted above, combinations of the basic variables determine to a large extent the risk level with respect to the development of musculoskeletal complaints and cumulative trauma disorders. For instance, high time demands may render a working situation unacceptable in cases where there are also at least medium level demands with respect to force and posture. It is essential in the design and assessment of workplaces that the most important variables be considered jointly. Here a cube model for such evaluation purposes is proposed. The basic variables—force, posture and time—constitute the three axes of the cube. For each combination of demands a subcube may be defined; in all, the model incorporates 27 such subcubes (see figure 29.35).

Figure 29.35 The "cube model" for ergonomics assessment.  Each cube represents a combination of demands relating to force, posture and time.  Light: acceptable combination; gray: conditionally acceptable; black: unacceptable

An essential aspect of the model is the degree of acceptability of the demand combinations. In the model, a three-zone classification scheme is proposed for acceptability: (1) the situation is acceptable, (2) the situation is conditionally acceptable or (3) the situation is unacceptable. For didactic purposes, each subcube may be given a certain texture or colour (say, green-yellow-red). Again, the assessment may be user-based or based on scientific evidence. The conditionally acceptable (yellow) zone means that “there exists a risk of disease or injury that cannot be neglected, for the whole or a part of the operator population in question” (CEN 1994).

In order to develop this approach, it is useful to consider a case: the evaluation of load on the shoulder in moderately paced one-handed materials handling. This is a good example, since in this type of situation, it is normally the shoulder structures that are under the heaviest strain.

With respect to the force variable, classification may be based in this case on handled mass. Here, low force demand is identified as levels below 10% of maximal voluntary lifting capacity (MVLC), which amounts to approximately 1.6 kg in an optimal working zone. High force demand requires more than 30% MVLC, approximately 4.8 kg. Medium force demand falls in between these limits. Low postural strain is when the upper arm is close to the thorax. High postural strain is when humeral abduction or flexion exceeds 45°. Medium postural strain is when the abduction/flexion angle is between 15° and 45°. Low time demand is when the handling occupies less than one hour per working day on and off, or continuously for less than 10 minutes per day. High time demand is when the handling takes place for more than four hours per working day, or continuously for more than 30 minutes (sustained or repetitively). Medium time demand is when the exposure falls between these limits.

In figure 29.35 , degrees of acceptability have been assigned to combinations of demands. For instance, it is seen that high time demands may only be combined with combined low force and postural demands. Moving from unacceptable to acceptable may be undertaken by reducing demands in either dimension, but reduction in time demands is the most efficient way in many cases. In other words, in some cases workplace design should be altered, in other cases it may be more efficient to change the organization of work.

Using a consensus panel with a set of users for definition of demand levels and classification of degree of acceptability may enhance the workstation design process considerably, as considered below.

Additional variables

In addition to the basic variables considered above, a set of variables and factors characterizing the workplace from an ergonomics point of view has to be taken into account, depending upon the particular conditions of the situation to be analysed. They include:

·     precautions to reduce risks for accidents

·     specific environmental factors such as noise, lighting and ventilation

·     exposure to climatic factors

·     exposure to vibration (from hand-held tools or whole body)

·     ease of meeting productivity and quality demands.

To a large extent these factors may be considered one at a time; hence the checklist approach may be useful. Grandjean (1988) in his textbook covers the essential aspects that usually need to be taken into account in this context. Konz (1990) in his guidelines provides for workstation organization and design a set of leading questions focusing on worker-machine interfacing in manufacturing systems.

In the design process followed here, the checklist should be read in conjunction with the user-specified demands.

A Workstation Design Example: Manual Welding

As an illustrative (hypothetical) example, the design process leading to implementation of a workstation for manual welding (Sundin et al. 1994) is described here. Welding is an activity frequently combining high demands for muscular force with high demands for manual precision. The work has a static character. The welder is often doing welding exclusively. The welding work environment is generally hostile, with a combination of exposure to high noise levels, welding smoke and optical radiation.

The task was to devise a workplace for manual MIG (metal inert gas) welding of medium size objects (up to 300 kg) in a workshop environment. The workstation had to be flexible since there was a variety of objects to be manufactured. There were high demands for productivity and quality.

A QFD process was carried out in order to provide a set of workstation demands in user terms. Welders, production engineers and product designers were involved. User demands, which are not listed here, covered a wide range of aspects including ergonomics, safety, productivity and quality.

Using the cube model approach, the panel identified, by consensus, limits between high, moderate and low load:

1.     Force variable. Less than 1 kg handled mass is termed a low load, whereas more than 3 kg is considered a high load.

2.     Postural strain variable. Working positions implying high strain are those involving elevated arms, twisted or deep forward-flexed positions, and kneeling positions, and also include situations where the wrist is held in extreme flexion/extension or deviation. Low strain occurs where the posture is straight upright standing or sitting and where hands are in optimal working zones.

3.     Time variable. Less than 10% of the working time devoted to welding is considered low demand, whereas more than 40% of total working time is termed high demand. Medium demands occur when the variable falls between the limits given above, or when the situation is unclear.

It was clear from assessment using the cube model (figure 29.35) that high time demands could not be accepted if there were concurrent high or moderate demands in terms of force and postural strain. In order to reduce these demands, mechanized object handling and tool suspension was deemed a necessity. There was consensus developed around this conclusion. Using a simple computer-aided design (CAD) program (ROOMER), an equipment library was created. Various workplace station layouts could be developed very easily and modified in close interaction with the users. This design approach has significant advantages compared with merely looking at plans. It gives the user an immediate vision of what the intended workplace may look like.

Figure 29.36  shows the welding workstation arrived at using the CAD system. It is a workplace which reduces the force and posture demands, and which meets nearly all the residual user demands put forward.

Figure 29.36 A CAD version of a workstation for manual welding, arrived at in the design process

On the basis of the results of the first stages of the design process, a welding workplace (figure 29.37) was implemented. Assets of this workplace include:

Figure 29.37 The welding workstation implemented

1.     Work in the optimized zone is facilitated using a computerized handling device for welding objects. There is an overhead hoist for transportation purposes. As an alternative, a balanced lifting device is supplied for easy object handling.

2.     The welding gun and grinding machine are suspended, thus reducing force demands. They can be positioned anywhere around the welding object. A welding chair is supplied.

3.     All media come from above, which means that there are no cables on the floor.

4.     The workstation has lighting at three levels: general, workplace and process. The workplace lighting comes from ramps above the wall elements. The process lighting is integrated in the welding smoke ventilation arm.

5.     The workstation has ventilation at three levels: general displacement ventilation, workplace ventilation using a movable arm, and integrated ventilation in the MIG welding gun. The workplace ventilation is controlled from the welding gun.

6.     There are noise-absorbing wall elements on three sides of the workplace. A transparent welding curtain covers the fourth wall. This makes it possible for the welder to keep informed of what happens in the workshop environment.

In a real design situation, compromises of various kinds may have to be made, due to economic, space and other constraints. It should be noted, however, that licensed welders are hard to come by for the welding industry around the world, and they represent a considerable investment. Nearly no welders go into normal retirement as active welders. Keeping the skilled welder on the job is beneficial for all parties involved: welder, company and society. For instance, there are very good reasons why equipment for object handling and positioning should be an integral constituent of many welding workplaces.

Data for Workstation Design

In order to be able to design a workplace properly, extensive sets of basic information may be needed. Such information includes anthropometric data of user categories, lifting strength and other output force capacity data of male and female populations, specifications of what constitutes optimal working zones and so forth. In the present article, references to some key papers are given.

The most complete treatment of virtually all aspects of work and workstation design is probably still the textbook by Grandjean (1988). Information on a wide range of anthropometric aspects relevant to workstation design is presented by Pheasant (1986). Large amounts of biomechanical and anthropometric data are given by Chaffin and Andersson (1984). Konz (1990) has presented a practical guide to workstation design, including many useful rules of thumb. Evaluation criteria for the upper limb, particularly with reference to cumulative trauma disorders, have been presented by Putz-Anderson (1988). An assessment model for work with hand tools was given by Sperling et al. (1993). With respect to manual lifting, Waters and co-workers have developed the revised NIOSH equation, summarizing existing scientific knowledge on the subject (Waters et al. 1993). Specification of functional anthropometry and optimal working zones have been presented by, for example, Rebiffé, Zayana and Tarrière (1969) and Das and Grady (1983a, 1983b). Mital and Karwowski (1991) have edited a useful book reviewing various aspects relating in particular to the design of industrial workplaces.

The large amount of data needed to design workstations properly, taking all relevant aspects into account, will make necessary the use of modern information technology by production engineers and other responsible people. It is likely that various types of decision-support systems will be made available in the near future, for instance in the form of knowledge-based or expert systems. Reports on such developments have been given by, for example, DeGreve and Ayoub (1987), Laurig and Rombach (1989), and Pham and Onder (1992). However, it is an extremely difficult task to devise a system making it possible for the end-user to have easy access to all relevant data needed in a specific design situation.


T.M. Fraser

Commonly a tool comprises a head and a handle, with sometimes a shaft, or, in the case of the power tool, a body. Since the tool must meet the requirements of multiple users, basic conflicts can arise which may have to be met with compromise. Some of these conflicts derive from limitations in the capacities of the user, and some are intrinsic to the tool itself. It should be remembered, however, that human limitations are inherent and largely immutable, while the form and function of the tool are subject to a certain amount of modification. Thus, in order to effect desirable change, attention must be directed primarily to the form of the tool, and, in particular, to the interface between the user and the tool, namely the handle.

The Nature of Grip

The widely accepted characteristics of grip have been defined in terms of a power grip, a precision grip and a hook grip, by which virtually all human manual activities can be accomplished.

In a power grip, such as is used in hammering nails, the tool is held in a clamp formed by the partially flexed fingers and the palm, with counterpressure being applied by the thumb. In a precision grip, such as one uses when adjusting a set screw, the tool is pinched between the flexor aspects of the fingers and the opposing thumb. A modification of the precision grip is the pencil grip, which is self-explanatory and is used for intricate work. A precision grip provides only 20% of the strength of a power grip.

A hook grip is used where there is no requirement for anything other than holding. In the hook grip the object is suspended from the flexed fingers, with or without the support of the thumb. Heavy tools should be designed so that they can be carried in a hook grip.

Grip Thickness

For precision grips, recommended thicknesses have varied from 8 to 16 millimetres (mm) for screwdrivers, and 13 to 30 mm for pens. For power grips applied around a more or less cylindrical object, the fingers should surround more than half the circumference, but the fingers and thumb should not meet. Recommended diameters have ranged from as low as 25 mm to as much as 85 mm. The optimum, varying with hand size, is probably around 55 to 65 mm for males, and 50 to 60 mm for females. Persons with small hands should not perform repetitive actions in power grips of diameter greater than 60 mm.

Grip Strength and Hand Span

The use of a tool requires strength. Other than for holding, the greatest requirement for hand strength is found in the use of cross-lever action tools such as pliers and crushing tools. The effective force in crushing is a function of the grip strength and the required span of the tool. The maximum functional span between the end of the thumb and the ends of the grasping fingers averages about 145 mm for men and 125 mm for women, with ethnic variations. For an optimal span, which ranges from 45 to 55 mm for both men and women, the grip strength available for a single short-term action ranges from about 450 to 500 newtons for men and 250 to 300 newtons for women, but for repetitive action the recommended requirement is probably closer to 90 to 100 newtons for men, and 50 to 60 newtons for women. Many commonly used clamps or pliers are beyond the capacity of one-handed use, particularly in women.

When a handle is that of a screwdriver or similar tool the available torque is determined by the user’s ability to transmit force to the handle, and thus is determined by both the coefficient of friction between hand and handle and the diameter of the handle. Irregularities in the shape of the handle make little or no difference to the ability to apply torque, although sharp edges can cause discomfort and eventual tissue damage. The diameter of a cylindrical handle that allows the greatest application of torque is 50 to 65 mm, while that for a sphere is 65 to 75 mm.


Shape of handle

The shape of a handle should maximize contact between skin and handle. It should be generalized and basic, commonly of flattened cylindrical or elliptical section, with long curves and flat planes, or a sector of a sphere, put together in such a manner as to conform to the general contours of the grasping hand. Because of its attachment to the body of a tool, the handle may also take the form of a stirrup, a T-shape or an L-shape, but the portion that contacts the hand will be in the basic form.

The space enclosed by the fingers is, of course, complex. The use of simple curves is a compromise intended to meet the variations represented by different hands and different degrees of flexion. In this regard, it is undesirable to introduce any contour matching of flexed fingers into the handle in the form of ridges and valleys, flutings and indentations, since, in fact, these modifications would not fit a significant number of hands and might indeed, over a prolonged period, cause pressure injury to the soft tissues. In particular, recesses of greater that 3 mm are not recommended.

A modification of the cylindrical section is the hexagonal section, which is of particular value in the design of small calibre tools or instruments. It is easier to maintain a stable grip on a hexagonal section of small calibre than on a cylinder. Triangular and square sections have also been used with varying degrees of success. In these cases, the edges must be rounded to avert pressure injury.

Grip Surface and Texture

It is not by accident that for millennia wood has been the material of choice for tool handles other than those for crushing tools like pliers or clamps. In addition to its aesthetic appeal, wood has been readily available and easily worked by unskilled workers, and has qualities of elasticity, thermal conductivity, frictional resistance and relative lightness in relation to bulk that have made it very acceptable for this and other uses.

In recent years, metal and plastic handles have become more common for many tools, the latter in particular for use with light hammers or screwdrivers. A metal handle, however, transmits more force to the hand, and preferably should be encased in a rubber or plastic sheath. The grip surface should be slightly compressible, where feasible, nonconductive and smooth, and the surface area should be maximized to ensure pressure distribution over as large an area as possible. A foam rubber grip has been used to reduce the perception of hand fatigue and tenderness.

The frictional characteristics of the tool surface vary with the pressure exerted by the hand, with the nature of the surface and contamination by oil or sweat. A small amount of sweat increases the coefficient of friction.

Length of handle

The length of the handle is determined by the critical dimensions of the hand and the nature of the tool. For a hammer to be used by one hand in a power grip, for example, the ideal length ranges from a minimum of about 100 mm to a maximum of about 125 mm. Short handles are unsuitable for a power grip, while a handle shorter than 19 mm cannot be properly grasped between thumb and forefinger and is unsuitable for any tool.

Ideally, for a power tool, or a hand saw other than a coping or fret saw, the handle should accommodate at the 97.5th percentile level the width of the closed hand thrust into it, namely 90 to 100 mm in the long axis and 35 to 40 mm in the short.

Weight and Balance

Weight is not a problem with precision tools. For heavy hammers and power tools a weight between 0.9 kg and 1.5 kg is acceptable, with a maximum of about 2.3 kg. For weights greater than recommended, the tool should be supported by mechanical means.

In the case of a percussion tool such as a hammer, it is desirable to reduce the weight of the handle to the minimum compatible with structural strength and have as much weight as possible in the head. In other tools, the balance should be evenly distributed where possible. In tools with small heads and bulky handles this may not be possible, but the handle should then be made progressively lighter as the bulk increases relative to the size of the head and shaft.

Significance of Gloves

It is sometimes overlooked by tool designers that tools are not always held and operated by bare hands. Gloves are commonly worn for safety and comfort. Safety gloves are seldom bulky, but gloves worn in cold climates may be very heavy, interfering not only with sensory feedback but also with the ability to grasp and hold. The wearing of woollen or leather gloves can add 5 mm to hand thickness and 8 mm to hand breadth at the thumb, while heavy mittens can add as much as 25 to 40 mm respectively.


The majority of the population in the western hemisphere favours the use of the right hand. A few are functionally ambidextrous, and all persons can learn to operate with greater or less efficiency with either hand.

Although the number of left-handed persons is small, wherever feasible the fitting of handles to tools should make the tool workable by either left-handed or right-handed persons (examples would include the positioning of the secondary handle in a power tool or the finger loops in scissors or clamps) unless it is clearly inefficient to do so, as in the case of screw-type fasteners which are designed to take advantage of the powerful supinating muscles of the forearm in a right-handed person while precluding the left-hander from using them with equal effectiveness. This sort of limitation has to be accepted since the provision of left-hand threads is not an acceptable solution.

Significance of Gender

In general, women tend to have smaller hand dimensions, smaller grasp and some 50 to 70% less strength than men, although of course a few women at the higher percentile end have larger hands and greater strength than some men at the lower percentile end. As a result there exists a significant although undetermined number of persons, mostly female, who have difficulty in manipulating various hand tools which have been designed with male use in mind, including in particular heavy hammers and heavy pliers, as well as metal cutting, crimping and clamping tools and wire strippers. The use of these tools by women may require an undesirable two-handed instead of single-handed function. In a mixed-gender workplace it is therefore essential to ensure that tools of suitable size are available not only to meet the requirements of women, but also to meet those of men who are at the low percentile end of hand dimensions.

Special considerations

The orientation of a tool handle, where feasible, should allow the operating hand to conform to the natural functional position of the arm and hand, namely with the wrist more than half-supinated, abducted about 15° and slightly dorsiflexed, with the little finger in almost full flexion, the others less so and the thumb adducted and slightly flexed, a posture sometimes erroneously called the handshake position. (In a handshake the wrist is not more than half-supinated.) The combination of adduction and dorsiflexion at the wrist with varying flexion of the fingers and thumb generates an angle of grasp comprising about 80° between the long axis of the arm and a line passing through the centre point of the loop created by the thumb and index finger, that is, the transverse axis of the fist.

Forcing the hand into a position of ulnar deviation, that is, with the hand bent towards the little finger, as is found in using a standard pliers, generates pressure on the tendons, nerves and blood vessels within the wrist structure and can give rise to the disabling conditions of tenosynovitis, carpal tunnel syndrome and the like. By bending the handle and keeping the wrist straight, (that is, by bending the tool and not the hand) compression of nerves, soft tissues and blood vessels can be avoided. While this principle has been long recognized, it has not been widely accepted by tool manufacturers or the using public. It has particular application in the design of cross-lever action tools such as pliers, as well as knives and hammers.

Pliers and cross-lever tools

Special consideration must be given to the shape of the handles of pliers and similar devices. Traditionally pliers have had curved handles of equal length, the upper curve approximating the curve of the palm of the hand and the lower curve approximating the curve of the flexed fingers. When the tool is held in the hand, the axis between the handles is in line with the axis of the jaws of the pliers. Consequently, in operation, it is necessary to hold the wrist in extreme ulnar deviation, that is, bent towards the little finger, while it is being repeatedly rotated. In this position the use of the hand-wrist-arm segment of the body is extremely inefficient and very stressful on the tendons and joint structures. If the action is repetitive it may give rise to various manifestations of overuse injury.

To counter this problem a new and ergonomically more suitable version of pliers has appeared in recent years. In these pliers the axis of the handles is bent through approximately 45° relative to the axis of the jaws. The handles are thickened to allow a better grasp with less localized pressure on the soft tissues. The upper handle is proportionately longer with a shape that fits into, and around the ulnar side of, the palm. The forward end of the handle incorporates a thumb support. The lower handle is shorter, with a tang, or rounded projection, at the forward end and a curve conforming to the flexed fingers.

While the foregoing is a somewhat radical change, several ergonomically sound improvements can be made in pliers relatively easily. Perhaps the most important, where a power grip is required, is in the thickening and slight flattening of the handles, with a thumb support at the head-end of the handle and a slight flare at the other end. If not integral to the design, this modification can be achieved by encasing the basic metal handle with a fixed or detachable non-conductive sheath made of rubber or an appropriate synthetic material, and perhaps bluntly roughened to improve the tactile quality. Indentation of the handles for fingers is undesirable. For repetitive use it may be desirable to incorporate a light spring into the handle to open it after closing.

The same principles apply to other cross-lever tools, particularly with respect to change in the thickness and flattening of the handles.


For a general purpose knife, that is, one that is not used in a dagger grasp, it is desirable to include a 15° angle between handle and blade to reduce the stress on joint tissues. The size and shape of handles should conform in general to that for other tools, but to allow for different hand sizes it has been suggested that two sizes of knife handle should be supplied, namely one to fit the 50th to 95th percentile user, and one for the 5th to 50th percentile. To allow the hand to exert force as close to the blade as possible the top surface of the handle should incorporate a raised thumb rest.

A knife guard is required to prevent the hand from slipping forward onto the blade. The guard may take several forms, such as a tang, or curved projection, about 10 to 15 mm in length, protruding downwards from the handle, or at right angles to the handle, or a bail guard comprising a heavy metal loop from front to rear of the handle. The thumb rest also acts to prevent slippage.

The handle should conform to general ergonomic guidelines, with a yielding surface resistant to grease.


The requirements for hammers have been largely considered above, with the exception of that relating to bending the handle. As noted above, forced and repetitive bending of the wrist may cause tissue damage. By bending the tool instead of the wrist this damage may be reduced. With respect to hammers various angles have been examined, but it would appear that bending the head downward between 10° and 20° may improve comfort, if it does not actually improve performance.

Screwdrivers and scraping tools

The handles of screwdrivers and other tools held in a somewhat similar manner, such as scrapers, files, hand chisels and so on, have some special requirements. Each at one time or another is used with a precision grip or a power grip. Each relies on the functions of the fingers and the palm of the hand for stabilization and the transmission of force.

The general requirements of handles have already been considered. The most common effective shape of a screwdriver handle has been found to be that of a modified cylinder, dome-shaped at the end to receive the palm, and slightly flared where it meets the shaft to provide support to the ends of the fingers. In this manner, torque is applied largely by way of the palm, which is maintained in contact with the handle by way of pressure applied from the arm and the frictional resistance at the skin. The fingers, although transmitting some force, occupy more of a stabilizing role, which is less fatiguing since less power is required. Thus the dome of the head becomes very important in handle design. If there are sharp edges or ridges on the dome or where the dome meets the handle, then either the hand becomes callused and injured, or the transmission of force is transferred towards the less efficient and more readily fatigued fingers and thumb. The shaft is commonly cylindrical, but a triangular shaft has been introduced which provides better support for the fingers, although its use may be more fatiguing.

Where the use of a screwdriver or other fastener is so repetitive as to comprise an overuse injury hazard the manual driver should be replaced with a powered driver slung from an overhead harness in such a manner as to be readily accessible without obstructing the work.

Saws and power tools

Hand saws, with the exception of fret saws and light hacksaws, where a handle like that of a screwdriver is most appropriate, commonly have a handle which takes the form of a closed pistol grip attached to the blade of the saw.

The handle essentially comprises a loop into which the fingers are placed. The loop is effectively a rectangle with curved ends. To allow for gloves it should have internal dimensions of approximately 90 to 100 mm in the long diameter and 35 to 40 mm in the short. The handle in contact with the palm should have the flattened cylindrical shape already mentioned, with compound curves to reasonably fit the palm and the flexed fingers. The width from outer curve to inner curve should be about 35 mm, and the thickness not more than 25 mm.

Curiously, the function of grasping and holding a power tool is very similar to that of holding a saw, and consequently a somewhat similar type of handle is effective. The pistol grip common in power tools is akin to an open saw handle with the sides being curved instead of being flattened.

Most power tools comprise a handle, a body and a head. Placement of the handle is significant. Ideally handle, body and head should be in line so that the handle is attached at the rear of the body and the head protrudes from the front. The line of action is the line of the extended index finger, so that the head is eccentric to the central axis of the body. The centre of mass of the tool, however, is in front of the handle, while the torque is such as to create a turning movement of the body which the hand must overcome. Consequently it would be more appropriate to place the primary handle directly under the centre of mass in such a way that, if necessary, the body juts out behind the handle as well as in front. Alternatively, particularly in a heavy drill, a secondary handle can be placed underneath the drill in such a manner that the drill can be operated with either hand. Power tools are normally operated by a trigger incorporated into the upper front end of the handle and operated by the index finger. The trigger should be designed to be operated by either hand and should incorporate an easily reset latching mechanism to hold the power on when required.


Karl H. E. Kroemer

In what follows, three of the most important concerns of ergonomic design will be examined: first, that of controls, devices to transfer energy or signals from the operator to a piece of machinery; second, indicators or displays, which provide visual information to the operator about the status of the machinery; and third, the combination of controls and displays in a panel or console.

Designing for the Sitting Operator

Sitting is a more stable and less energy-consuming posture than standing, but it restricts the working space, particularly of the feet, more than standing. However, it is much easier to operate foot controls when sitting, as compared to standing, because little body weight must be transferred by the feet to the ground. Furthermore, if the direction of the force exerted by the foot is partly or largely forward, provision of a seat with a backrest allows the exertion of rather large forces. (A typical example of this arrangement is the location of pedals in an automobile, which are located in front of the driver, more or less below seat height.) Figure 29.38  shows schematically the locations in which pedals may be located for a seated operator. Note that the specific dimensions of that space depend on the anthropometry of the actual operators.

Figure 29.38 Preferred and regular workspace for feet (in centimetres)

The space for the positioning of hand-operated controls is primarily located in front of the body, within a roughly spherical contour that is centred at either the elbow, at the shoulder, or somewhere between those two body joints. Figure 29.39  shows schematically that space for the location of controls. Of course, the specific dimensions depend on the anthropometry of the operators.

Figure 29.39 Preferred and regular workspace for hands (in centimetres)

The space for displays and for controls that must be looked at is bounded by the periphery of a partial sphere in front of the eyes and centred at the eyes. Thus, the reference height for such displays and controls depends on the eye height of the seated operator and on his or her trunk and neck postures. The preferred location for visual targets closer than about one metre is distinctly below the height of the eye, and depends on the closeness of the target and on the posture of the head. The closer the target, the lower it should be located, and it should be in or near the medial (mid-sagittal) plane of the operator.

It is convenient to describe the posture of the head by using the “ear-eye line” (Kroemer 1994a) which, in the side view, runs through the right ear hole and the juncture of the lids of the right eye, while the head is not tilted to either side (the pupils are at the same horizontal level in the frontal view). One usually calls the head position “erect” or “upright” when the pitch angle P (see figure 29.40) between the ear-eye line and the horizon is about 15°, with the eyes above the height of the ear. The preferred location for visual targets is 25°-65° below the ear-eye line (LOSEE in figure 29.40), with the lower values preferred by most people for close targets that must be kept in focus. Even though there are large variations in the preferred angles of the line of sight, most subjects, particularly as they become older, prefer to focus on close targets with large LOSEE angles.

Figure 29.40 Ear-eye line

Designing for the Standing Operator

Pedal operation by a standing operator should be seldom required, because otherwise the person must spend too much time standing on one foot while the other foot operates the control. Obviously, simultaneous operation of two pedals by a standing operator is practically impossible. While the operator is standing still, the room for the location of foot controls is limited to a small area below the trunk and slightly in front of it. Walking about would provide more room to place pedals, but that is highly impractical in most cases because of the walking distances involved.

The location for hand-operated controls of a standing operator includes about the same area as for a seated operator, roughly a half sphere in front of the body, with its centre near the shoulders of the operator. For repeated control operations, the preferred part of that half sphere would be its lower section. The area for the location of displays is also similar to the one suited to a seated operator, again roughly a half sphere centred near the operator’s eyes, with the preferred locations in the lower section of that half sphere. The exact locations for displays, and also for controls that must be seen, depends on the posture of the head, as discussed above.

The height of controls is appropriately referenced to the height of the elbow of the operator while the upper arm is hanging from the shoulder. The height of displays and controls that must be looked at is referred to the eye height of the operator. Both depend on the operator’s anthropometry, which may be rather different for short and tall persons, for men and women, and for people of different ethnic origins.

Foot-operated Controls

Two kinds of controls should be distinguished: one is used to transfer large energy or forces to a piece of machinery. Examples of this are the pedals on a bicycle or the brake pedal in a heavier vehicle that does not have a power-assist feature. A foot-operated control, such as an on-off switch, in which a control signal is conveyed to the machinery, usually requires only a small quantity of force or energy. While it is convenient to consider these two extremes of pedals, there are various intermediate forms, and it is the task of the designer to determine which of the following design recommendations apply best among them.

As mentioned above, repeated or continual pedal operation should be required only from a seated operator. For controls meant to transmit large energies and forces, the following rules apply:

·     Locate pedals underneath the body, slightly in front, so that they can be operated with the leg in a comfortable position. The total horizontal displacement of a reciprocating pedal should normally not exceed about 0.15 m. For rotating pedals, the radius should also be about 0.15 m. The linear displacement of a switch-type pedal may be minimal and should not exceed about 0.15 m.

·     Pedals should be so designed that the direction of travel and the foot force are approximately in the line extending from the hip through the ankle joint of the operator.

·     Pedals that are operated by flexion and extension of the foot in the ankle joint should be so arranged that in the normal position the angle between the lower leg and the foot is approximately 90°; during operation, that angle may be increased to about 120°.

·     Foot-operated controls that simply provide signals to the machinery should normally have two discrete positions, such as ON or OFF. Note, however, that tactile distinction between the two positions may be difficult with the foot.

Selection of Controls

Selection among different sorts of controls must be made according to the following needs or conditions:

·     Operation by hand or foot

·     Amounts of energies and forces transmitted

·     Applying “continuous” inputs, such as steering an automobile

·     Performing “discrete actions,” for example, (a) activating or shutting down equipment, (b) selecting one of several distinct adjustments, such as switching from one TV or radio channel to another, or (c) carrying out data entry, as with a keyboard.

The functional usefulness of controls also determines selection procedures. The main criteria are as follows:

·     The control type shall be compatible with stereotypical or common expectations (for instance, using a push-button or toggle switch to turn on an electric light, not a rotary knob).

·     Size and motion characteristics of the control shall be compatible with stereotypical experience and past practice (for instance, providing a large steering wheel for the two-handed operation of an automobile, not a lever).

·     The direction of operation of a control shall be compatible with stereotypical or common expectations (for instance, an ON control is pushed or pulled, not turned to the left).

·     Hand operation is used for controls that require small force and fine adjustment, while foot operation is suitable for gross adjustments and large forces (however, consider the common use of pedals, particularly accelerator pedals, in automobiles, which does not comply with this principle).

·     The control shall be “safe” in that it cannot be operated inadvertently nor in ways that are excessive or inconsistent with its intended purpose.

Table 29.10 and table 29.11  help in the selection of proper controls. However, note that there are few “natural” rules for selection and design of controls. Most current recommendations are purely empirical and apply to existing devices and Western stereotypes.

Table 29.10 Control movements and expected effects

Direction of control movement
















































































































































Open Value













Close Value













Blank: Not applicable; + Most preferred; – less preferred.

1 With trigger-type control. 2 With push-pull switch. 3 Up in the United States, down in Europe.

Source: Modified from Kroemer 1995.

Table 29.11 Control-effect relations of common hand controls


Key- lock

Toggle  switch

Push- button

Bar  knob

Round  knob

Thumbwheel  discrete

Thumbwheel  continuous


Rocker switch


Joystick  or ball

Legend  switch


Select ON/OFF




























Select one function of several  related functions






Select one of three or more  discrete alternatives





Select operating condition








Engage or disengage




Select one of mutually   exclusive functions






Set value on scale










Select value in discrete steps








Blank: Not applicable; +: Most preferred; –: Less preferred; = Least preferred.

1 Estimated (no experiments known).

Source: Modified from Kroemer 1995.

Figure 29.41  presents examples of “detent” controls, characterized by discrete detents or stops in which the control comes to rest. It also depicts typical “continuous” controls where the control operation may take place anywhere within the adjustment range, without the need to be set in any given position.

Figure 29.41 Some examples of "detent" and "continuous" controls

The sizing of controls is largely a matter of past experiences with various control types, often guided by the desire to minimize the needed space in a control panel, and either to allow simultaneous operations of adjacent controls or to avoid inadvertent concurrent activation. Furthermore, the choice of design characteristics will be influenced by such considerations as whether the controls are to be located outdoors or in sheltered environments, in stationary equipment or moving vehicles, or may involve the use of bare hands or of gloves and mittens. For these conditions, consult readings at the end of the chapter.

Several operational rules govern the arrangement and grouping of controls. These are listed in table 29.12 . For more details, check the references listed at the end of this section and Kroemer, Kroemer and Kroemer-Elbert (1994).

Table 29.12 Rules for arrangement of controls

Locate for the ease of operation

Controls shall be oriented with respect to the operator. If the  operator uses different postures (such as in driving and  operating a backhoe), the controls and their associated  displays shall move with the operator so that in each posture  their arrangement and operation is the same for the operator.

Primary controls first

The most important controls shall have the most advantageous  locations to make operation and reaching easy for the  operator.

Group related controls together

Controls that are operated in sequence, that are related to a   particular function, or that are operated together, shall be   arranged in functional groups (together with their associated   displays). Within each functional group, controls and displays   shall be arranged according to operational importance and   sequence.

Arrange for sequential operation

If operation of controls follows a given pattern, controls shall   be arranged to facilitate that sequence. Common   arrangements are left-to-right (preferred) or top-to-bottom,   as in printed materials of the Western world.

Be consistent

The arrangement of functionally identical or similar controls shall be the same from panel to panel.

Dead-operator  control

If the operator becomes incapacitated and either lets go of a   control, or continues to hold on to it, a “deadman” control   design shall be utilized which either turns the system to a   non-critical operation state or shuts it down.

Select codes appropriately

There are numerous ways to help identify controls, to indicate  the effects of the operation and to show their status.  Major coding means are: 

–Location–Shape–Size–Mode of operation– Labels  –Colours–Redundancy

Source: Modified from Kroemer, Kroemer and Kroemer-Elbert 1994.  Reproduced by permission of Prentice-Hall. All rights reserved.

Preventing Accidental Operation

The following are the most important means to guard against inadvertent activation of controls, some of which may be combined:

·     Locate and orient the control so that the operator is unlikely to strike it or move it accidentally in the normal sequence of control operations.

·     Recess, shield or surround the control by physical barriers.

·     Cover the control or guard it by providing a pin, a lock or other means that must be removed or broken before the control can be operated.

·     Provide extra resistance (by viscous or coulomb friction, by spring-loading or by inertia) so that an unusual effort is required for actuation.

·     Provide a “delaying” means so that the control must pass through a critical position with an unusual movement (such as in the gear shift mechanism of an automobile).

·     Provide interlocking between controls so that prior operation of a related control is required before the critical control can be activated.

Note that these designs usually slow the operation of controls, which may be detrimental in case of an emergency.

Data Entry Devices

Nearly all controls can be used to enter data on a computer or other data storage device. However, we are most used to the practice of using a keyboard with push-buttons. On the original typewriter keyboard, which has become the standard even for computer keyboards, the keys were arranged in a basically alphabetic sequence, which has been modified for various, often obscure, reasons. In some cases, letters which frequently follow each other in common text were spaced apart so that the original mechanical type bars might not entangle if struck in rapid sequence. “Columns” of keys run in roughly straight lines, as do the “rows” of keys. However, the fingertips are not aligned in such manners, and do not move in this way when digits of the hand are flexed or extended, or moved sideways.

Many attempts have been made over the last hundred years to improve keying performance by changing the keyboard layout. These include relocating keys within the standard layout, or changing the keyboard layout altogether. The keyboard has been divided into separate sections, and sets of keys (such as numerical pads) have been added. Arrangements of adjacent keys may be changed by altering spacing, offset from each other or from reference lines. The keyboard may be divided into sections for the left and right hand, and those sections may be laterally tilted and sloped and slanted.

The dynamics of the operation of push-button keys are important for the user, but are difficult to measure in operation. Thus, the force-displacement characteristics of keys are commonly described for static testing, which is not indicative of actual operation. By current practise, keys on computer keyboards have fairly little displacement (about 2 mm) and display a “snap-back” resistance, that is, a decrease in operation force at the point when actuation of the key has been achieved. Instead of separate single keys, some keyboards consist of a membrane with switches underneath which, when pressed in the correct location, generate the desired input with little or no displacement felt. The major advantage of the membrane is that dust or fluids cannot penetrate it; however, many users dislike it.

There are alternatives to the “one key-one character” principle; instead, one can generate inputs by various combinatory means. One is “chording”, meaning that two or more controls are operated simultaneously to generate one character. This poses demands on the memory capabilities of the operator, but requires the use of only very few keys. Other developments utilize controls other than the binary tapped push button, replacing it by levers, toggles or special sensors (such as an instrumented glove) which respond to movements of the digits of the hand.

By tradition, typing and computer entry have been made by mechanical interaction between the operator’s fingers and such devices as keyboard, mouse, track ball or light pen. Yet there are many other means to generate inputs. Voice recognition appears one promising technique, but other methods can be employed. They might utilize, for example, pointing, gestures, facial expressions, body movements, looking (directing one’s gaze), movements of the tongue, breathing or sign language to transmit information and to generate inputs to a computer. Technical development in this area is very much in flux, and as the many nontraditional input devices used for computer games indicate, acceptance of devices other than the traditional binary tap-down keyboard is entirely feasible within the near future. Discussions of current keyboard devices have been provided, for example, by Kroemer (1994b) and McIntosh (1994).


Displays provide information about the status of equipment. Displays may apply to the operator’s visual sense (lights, scales, counters, cathode-ray tubes, flat panel electronics, etc.), to the auditory sense (bells, horns, recorded voice messages, electronically generated sounds, etc.) or to the sense of touch (shaped controls, Braille, etc.). Labels, written instructions, warnings or symbols (“icons”) may be considered special kinds of displays.

The four “cardinal rules” for displays are:

1.     Display only that information which is essential for adequate job performance.

2.     Display information only as accurately as is required for the operator’s decisions and actions.

3.     Present information in the most direct, simple, understandable and usable form.

4.     Present information in such a way that failure or malfunction of the display itself will be immediately obvious.

The selection of either an auditory or visual display depends on the prevailing conditions and purposes. The objective of the display may be to provide:

·     historical information about the past state of the system, such as the course run by a ship

·     status information about the current state of the system, such as the text already input into a word processor or the current position of an airplane

·     predictive information, such as on the future position of a ship, given certain steering settings

·     instructions or commands telling the operator what to do, and possibly how to do it.

A visual display is most appropriate if the environment is noisy, the operator stays in place, the message is long and complex, and especially if it deals with the spatial location of an object. An auditory display is appropriate if the workplace must be kept dark, the operator moves around, and the message is short and simple, requires immediate attention, and deals with events and time.

Visual Displays

There are three basic types of visual displays: (1)The check display indicates whether or not a given condition exists (for example a green light indicates normal function). (2)The qualitative display indicates the status of a changing variable or its approximate value, or its trend of change (for example, a pointer moves within a “normal” range). (3) The quantitative display shows exact information that must be ascertained (for example, to find a location on a map, to read text or to draw on a computer monitor), or it may indicate an exact numerical value that must be read by the operator (for example, a time or a temperature).

Design guidelines for visual displays are:

·     Arrange displays so that the operator can locate and identify them easily without unnecessary searching. (This usually means that the displays should be in or near the medial plane of the operator, and below or at eye height.)

·     Group displays functionally or sequentially so that the operator can use them easily.

·     Make sure that all displays are properly illuminated or illuminant, coded and labelled according to their function.

·     Use lights, often coloured, to indicate the status of a system (such as ON or OFF) or to alert the operator that the system, or a subsystem, is inoperative and that special action must be taken. Common meanings of light colours are listed in figure 29.42 . Flashing red indicates an emergency condition that requires immediate action. An emergency signal is most effective when it combines sounds with a flashing red light.

Figure 29.42 Colour coding of indicator lights

For more complex and detailed information, especially quantitative information, one of four different kinds of displays are traditionally used: (1) a moving pointer (with fixed scale), (2) a moving scale (with fixed pointer), (3) counters or (4) “pictorial” displays, especially computer-generated on a display monitor. Figure 29.43  lists the major characteristics of these display types.

Figure 29.43 Characteristics of displays

It is usually preferable to use a moving pointer rather than a moving scale, with the scale either straight (horizontally or vertically arranged), curved or circular. Scales should be simple and uncluttered, with graduation and numbering so designed that correct readings can be taken quickly. Numerals should be located outside the scale markings so that they are not obscured by the pointer. The pointer should end with its tip directly at the marking. The scale should mark divisions only so finely as the operator must read. All major marks should be numbered. Progressions are best marked with intervals of one, five or ten units between major marks. Numbers should increase left to right, bottom to top or clockwise. For details of dimensions of scales refer to standards such as those listed by Cushman and Rosenberg 1991 or Kroemer 1994a.

Starting in the 1980s, mechanical displays with pointers and printed scales were increasingly replaced by “electronic” displays with computer-generated images, or solid-state devices using light-emitting diodes (see Snyder 1985a). The displayed information may be coded by the following means:

·     shapes, such as straight or circular

·     alphanumeric, that is, letters, numbers, words, abbreviations

·     figures, pictures, pictorials, icons, symbols, in various levels of abstraction, such as the outline of an airplane against the horizon

·     shades of black, white or gray

·     colours.

Unfortunately, many electronically generated displays have been fuzzy, often overly complex and colourful, hard to read, and required exact focusing and close attention, which may distract from the main task, for example, driving a car. In these cases the first three of the four “cardinal rules” listed above were often violated. Furthermore, many electronically generated pointers, markings and alphanumerics did not comply with established ergonomic design guidelines, especially when generated by line segments, scan lines or dot matrices. Although some of these defective designs were tolerated by the users, rapid innovation and improving display techniques allows many better solutions. However, the same rapid development leads to the fact that printed statements (even if current and comprehensive when they appear) are becoming obsolete quickly. Therefore, none are given in this text. Compilations have been published by Cushman and Rosenberg (1991), Kinney and Huey (1990), and Woodson, Tillman and Tillman (1991).

The overall quality of electronic displays is often wanting. One measure used to assess the image quality is the modulation transfer function (MTF) (Snyder 1985b). It describes the resolution of the display using a special sine-wave test signal; yet, readers have many criteria regarding the preference of displays (Dillon 1992).

Monochrome displays have only one colour, usually either green, yellow, amber, orange or white (achromatic). If several colours appear on the same chromatic display, they should be easily discriminated. It is best to display not more than three or four colours simultaneously (with preference being given to red, green, yellow or orange, and cyan or purple). All should strongly contrast with the background. In fact, a suitable rule is to design first by contrast, that is, in terms of black and white, and then to add colours sparingly.

In spite of the many variables that, singly and interacting with each other, affect the use of complex colour display, Cushman and Rosenberg (1991) compiled guidelines for use of colour in displays; these are listed in figure 29.44 .

Figure 29.44 Guidelines for use of colours in displays

Other suggestions are as follows:

·     Blue (preferably desaturated) is a good colour for backgrounds and large shapes. However, blue should not be used for text, thin lines or small shapes.

·     The colour of alphanumeric characters should contrast with that of the background.

·     When using colour, use shape as a redundant cue (e.g., all yellow symbols are triangles, all green symbols are circles, all red symbols are squares). Redundant coding makes the display much more acceptable for users who have colour-vision deficiencies.

·     As the number of colours is increased, the sizes of the colour-coded objects should also be increased.

·     Red and green should not be used for small symbols and small shapes in peripheral areas of large displays.

·     Using opponent colours (red and green, yellow and blue) adjacent to one another or in an object/background relationship is sometimes beneficial and sometimes detrimental. No general guidelines can be given; a solution should be determined for each case.

·     Avoid displaying several highly saturated, spectrally extreme colours at the same time.

Panels of Controls and Displays

Displays as well as controls should be arranged in panels so they are in front of the operator, that is, close to the person’s medial plane. As discussed earlier, controls should be near elbow height, and displays below or at eye height, whether the operator is sitting or standing. Infrequently operated controls, or less important displays, can be located further to the sides, or higher.

Often, information on the result of control operation is displayed on an instrument. In this case, the display should be located close to the control so that the control setting can be done without error, quickly and conveniently. The assignment is usually clearest when the control is directly below or to the right of the display. Care must be taken that the hand does not cover the display when operating the control.

Popular expectancies of control-display relations exist, but they are often learned, they may depend on the user’s cultural background and experience, and these relationships are often not strong. Expected movement relationships are influenced by the type of control and display. When both are either linear or rotary, the stereotypical expectation is that they move in corresponding directions, such as both up or both clockwise. When the movements are incongruent, in general the following rules apply:

·     Clockwise for increase. Turning the control clockwise causes an increase in the displayed value.

·     Warrick’s gear-slide rule. A display (pointer) is expected to move in the same direction as does the side of the control close to (i.e., geared with) the display.

The ratio of control and display displacement (C/D ratio or D/C gain) describes how much a control must be moved to adjust a display. If much control movement produces only a small display motion, once speaks of a high C/D ratio, and of the control as having low sensitivity. Often, two distinct movements are involved in making a setting: first a fast primary (“slewing”) motion to an approximate location, then a fine adjustment to the exact setting. In some cases, one takes as the optimal C/D ratio that which minimizes the sum of these two movements. However, the most suitable ratio depends on the given circumstances; it must be determined for each application.

Labels and Warnings


Ideally, no label should be required on equipment or on a control to explain its use. Often, however, it is necessary to use labels so that one may locate, identify, read or manipulate controls, displays or other equipment items. Labelling must be done so that the information is provided accurately and rapidly. For this, the guidelines in table 29.13  apply.

Table 29.13 Guidelines for labels


A label and the information printed on it shall be oriented  horizontally so that it can be read quickly and easily.   (Note that this applies if the operator is used to reading  horizontally, as in Western countries.)


A label shall be placed on or very near the item that it  identifies.


Placement of all labels shall be consistent throughout the  equipment and system.

Equipment   functions

A label shall primarily describe the function (“what does it  do”) of the labelled item.


Common abbreviations may be used. If a new abbreviation is  necessary, its meaning should be obvious to the reader.  The same abbreviation shall be used for all tenses and for  the singular and plural forms of a word. Capital letters  shall be used, periods normally omitted.


The label inscription shall be as concise as possible without  distorting the intended meaning or information. The texts  shall be unambiguous, redundancy minimized.


Words shall be chosen, if possible, that are familiar to the  operator.

Visibility and   legibility

The operator shall be able to be read easily and accurately at  the anticipated actual reading distances, at the anticipated  worst illumination level, and within the anticipated  vibration and motion environment. Important factors are:  contrast between the lettering and its background; the  height, width, strokewidth, spacing and style of letters;  and the specular reflection of the background, cover or  other components.

Font and size

Typography determines the legibility of written information;  it refers to style, font, arrangement and appearance.

Source: Modified from Kroemer, Kroemer and Kroemer-Elbert 1994  (reproduced by permission of Prentice-Hall; all rights reserved).

Font (typeface) should be simple, bold and vertical, such as Futura, Helvetica, Namel, Tempo and Vega. Note that most electronically generated fonts (formed by LED, LCD or dot matrix) are generally inferior to printed fonts; thus, special attention must be paid to making these as legible as possible.

·     The height of characters depends on the viewing distance:

viewing distance 35 cm, suggested height 22 mm

viewing distance 70 cm, suggested height 50 mm

viewing distance 1 m, suggested height 70 mm

viewing distance 1.5 m, suggested height at least 1 cm.

·     The ratio of strokewidth to character height should be between 1:8 to 1:6 for black letters on white background, and 1:10 to 1:8 for white letters on black background.

·     The ratio of character width to character height should be about 3:5.

·     The space between letters should be at least one stroke width.

·     The space between words should be at least one character width.

·     For continuous text, mix upper- and lower-case letters; for labels, use upper-case letters only.


Ideally, all devices should be safe to use. In reality, often this cannot be achieved through design. In this case, one must warn users of the dangers associated with product use and provide instructions for safe use to prevent injury or damage.

It is preferable to have an “active” warning, usually consisting of a sensor that notices inappropriate use, combined with an alerting device that warns the human of an impending danger. Yet, in most cases, “passive” warnings are used, usually consisting of a label attached to the product and of instructions for safe use in the user manual. Such passive warnings rely completely on the human user to recognize an existing or potential dangerous situation, to remember the warning, and to behave prudently.

Labels and signs for passive warnings must be carefully designed by following the most recent government laws and regulations, national and international standards, and the best applicable human engineering information. Warning labels and placards may contain text, graphics, and pictures—often graphics with redundant text. Graphics, particularly pictures and pictograms, can be used by persons with different cultural and language backgrounds, if these depictions are selected carefully. However, users with different ages, experiences, and ethnic and educational backgrounds, may have rather different perceptions of dangers and warnings. Therefore, design of a safe product is much preferable to applying warnings to an inferior product.


Andries F. Sanders

In designing equipment it is of the utmost importance to take full account of the fact that a human operator has both capabilities and limitations in processing information, which are of a varying nature and which are found on various levels. Performance in actual work conditions strongly depends on the extent to which a design has either attended to or ignored these potentials and their limits. In the following a brief sketch will be offered of some of the chief issues. Reference will be made to other contributions of this volume, where an issue will be discussed in greater detail.

It is common to distinguish three main levels in the analysis of human information processing, namely, the perceptual level, the decision level and the motor level. The perceptual level is subdivided into three further levels, relating to sensory processing, feature extraction and identification of the percept. On the decision level, the operator receives perceptual information and chooses a reaction to it which is finally programmed and actualized on the motor level. This describes only the information flow in the simplest case of a choice reaction. It is evident, though, that perceptual information may accumulate and be combined and diagnosed before eliciting an action. Again, there may arise a need for selecting information in view of perceptual overload. Finally, choosing an appropriate action becomes more of a problem when there are several options some of which may be more appropriate than others. In the present discussion, the emphasis will be on the perceptual and decisional factors of information processing.

Perceptual Capabilities and Limits

Sensory limits

The first category of processing limits is sensory. Their relevance to information processing is obvious since processing becomes less reliable as information approaches threshold limits. This may seem a fairly trivial statement, but nonetheless, sensory problems are not always clearly recognized in designs. For example, alphanumerical characters in sign posting systems should be sufficiently large to be legible at a distance consistent with the need for appropriate action. Legibility, in turn, depends not only on the absolute size of the alphanumericals but also on contrast and—in view of lateral inhibition—also on the total amount of information on the sign. In particular, in conditions of low visibility (e.g., rain or fog during driving or flying) legibility is a considerable problem requiring additional measures. More recently developed traffic signposts and road markers are usually well designed, but signposts near and within buildings are often illegible. Visual display units are another example in which sensory limits of size, contrast and amount of information play an important role. In the auditory domain some main sensory problems are related to understanding speech in noisy environments or in poor quality audio transmission systems.

Feature extraction

Provided sufficient sensory information, the next set of information processing issues relates to extracting features from the information presented. Most recent research has shown ample evidence that an analysis of features precedes the perception of meaningful wholes. Feature analysis is particularly useful in locating a special deviant object amidst many others. For instance, an essential value on a display containing many values may be represented by a single deviant colour or size, which feature then draws immediate attention or “pops out”. Theoretically, there is the common assumption of “feature maps” for different colours, sizes, forms and other physical features. The attention value of a feature depends on the difference in activation of the feature maps that belong to the same class, for example, colour. Thus, the activation of a feature map depends on the discriminability of the deviant features. This means that when there are a few instances of many colours on a screen, most colour feature maps are about equally activated, which has the effect that none of the colours pops out.

In the same way a single moving advertisement pops out, but this effect disappears altogether when there are several moving stimuli in the field of view. The principle of the different activation of feature maps is also applied when aligning pointers that indicate ideal parameter values. A deviation of a pointer is indicated by a deviant slope which is rapidly detected. If this is impossible to realize, a dangerous deviation might be indicated by a change in colour. Thus, the general rule for design is to use only a very few deviant features on a screen and to reserve them only for the most essential information. Searching for relevant information becomes cumbersome in the case of conjunctions of features. For example, it is hard to locate a large red object amidst small red objects and large and small green objects. If possible, conjunctions should be avoided when trying to design for efficient search.

Separable versus integral dimensions

Features are separable when they can be changed without affecting the perception of other features of an object. Line lengths of histograms are a case in point. On the other hand, integral features refer to features which, when changed, change the total appearance of the object. For instance, one cannot change features of the mouth in a schematic drawing of a face without altering the total appearance of the picture. Again, colour and brightness are integral in the sense that one cannot change a colour without altering the brightness impression at the same time. The principles of separable and integral features, and of emergent properties evolving from changes of single features of an object, are applied in so-called integrated or diagnostic displays. The rationale of these displays is that, rather than displaying individual parameters, different parameters are integrated into a single display, the total composition of which indicates what may be actually wrong with a system.

Data presentation in control rooms is still often dominated by the philosophy that each individual measure should have its own indicator. Piecemeal presentation of the measures means that the operator has the task of integrating the evidence from the various individual displays so as to diagnose a potential problem. At the time of the problems in the Three Mile Island nuclear power plant in the United States some forty to fifty displays were registering some form of disorder. Thus, the operator had the task of diagnosing what was actually wrong by integrating the information from that myriad of displays. Integral displays may be helpful in diagnosing the kind of error, since they combine various measures into a single pattern. Different patterns of the integrated display, then, may be diagnostic with regard to specific errors.

A classical example of a diagnostic display, which has been proposed for nuclear control rooms, is shown in figure 29.45 . It displays a number of measures as spokes of equal length so that a regular polygon always represents normal conditions, while different distortions may be connected with different types of problems in the process.

Figure 29.45 In the normal situation all parameter values are equal, creating a hexagon.  In the deviation, some of the values have changed creating a specific distortion.

Not all integral displays are equally discriminable. To illustrate the issue, a positive correlation between the two dimensions of a rectangle creates differences in surface, while maintaining an equal shape. Alternatively, a negative correlation creates differences in shape while maintaining an equal surface. The case in which variation of integral dimensions creates a new shape has been referred to as revealing an emergent property of the patterning, which adds to the operator’s ability to discriminate the patterns. Emergent properties depend upon the identity and arrangement of parts but are not identifiable with any single part.

Object and configural displays are not always beneficial. The very fact that they are integral means that the characteristics of the individual variables are harder to perceive. The point is that, by definition, integral dimensions are mutually dependent, thus clouding their individual constituents. There may be circumstances in which this is unacceptable, while one may still wish to profit from the diagnostic patternlike properties, which are typical for the object display. One compromise might be a traditional bar graph display. On the one hand, bar graphs are quite separable. Yet, when positioned in sufficiently close vicinity, the differential lengths of the bars may together constitute an object-like pattern which may well serve a diagnostic aim.

Some diagnostic displays are better than others. Their quality depends on the extent that the display corresponds to the mental model of the task. For example, fault diagnosis on the basis of distortions of a regular polygon, as in figure 29.45 [ERG45FE], may still bear little relationship to the domain semantics or to the concept of the operator of the processes in a power plant. Thus, various types of deviations of the polygon do not obviously refer to a specific problem in the plant. Therefore, the design of the most suitable configural display is one that corresponds to the specific mental model of the task. Thus it should be emphasized that the surface of a rectangle is only a useful object display when the product of length and width is the variable of interest!

Interesting object displays stem from three-dimensional representations. For instance, a three-dimensional representation of air traffic—rather than the traditional two-dimensional radar representation—may provide the pilot with a greater “situational awareness” of other traffic. The three-dimensional display has been shown to be much superior to a two-dimensional one since its symbols indicate whether another aircraft is above or below one’s own.

Degraded conditions

Degraded viewing occurs under a variety of conditions. For some purposes, as with camouflage, objects are intentionally degraded so as to prevent their identification. On other occasions, for example in brightness amplification, features may become too blurred to allow one to identify the object. One research issue has concerned the minimal number of “lines” required on a screen or “the amount of detail” needed in order to avoid degradation. Unfortunately, this approach to image quality has not led to unequivocal results. The problem is that identifying degraded stimuli (e.g., a camouflaged armoured vehicle) depends too much on the presence or absence of minor object-specific details. The consequence is that no general prescription about line density can be formulated, except for the trivial statement that degradation decreases as the density increases.

Features of alphanumeric symbols

A major issue in the process of feature extraction concerns the actual number of features which together define a stimulus. Thus, the legibility of ornate characters like Gothic letters is poor because of the many redundant curves. In order to avoid confusion, the difference between letters with very similar features—like the i and the l, and the c and the e—should be accentuated. For the same reason, it is recommended to make the stroke and tail length of ascenders and descenders at least 40% of the total letter height.

It is evident that discrimination among letters is mainly determined by the number of features which they do not share. These mainly consist of straight line and circular segments which may have horizontal, vertical and oblique orientation and which may differ in size, as in lower- and upper-case letters.

It is obvious that, even when alphanumericals are well discriminable, they may easily lose that property in combination with other items. Thus, the digits 4 and 7 share only a few features but they do not do well in the context of larger otherwise identical groups (e.g., 384 versus 387) There is unanimous evidence that reading text in lower case is faster than in capitals. This is usually ascribed to the fact that lower case letters have more distinct features (e.g., dog, cat versus DOG, CAT). The superiority of lower case letters has not only been established for reading text but also for road signs such as those used for indicating towns at the exits of motorways.


The final perceptual process is concerned with identification and interpretation of percepts. Human limits arising on this level are usually related to discrimination and finding the appropriate interpretation of the percept. The applications of research on visual discrimination are manifold, relating to alphanumerical patterns as well as to more general stimulus identification. The design of brake lights in cars will serve as an example of the last category. Rear-end accidents account for a considerable proportion of traffic accidents, and are due in part to the fact that the traditional location of the brake light next to the rear lights makes it poorly discriminable and therefore extends the driver’s reaction time. As an alternative, a single light has been developed which appears to reduce the accident rate. It is mounted in the centre of the rear window at approximately eye level. In experimental studies on the road, the effect of the central braking light appears to be less when subjects are aware of the aim of the study, suggesting that stimulus identification in the traditional configuration improves when subjects focus on the task. Despite the positive effect of the isolated brake light, its identification might still be further improved by making the brake light more meaningful, giving it the form of an exclamation mark, “!”, or even an icon.

Absolute judgement

Very strict and often counterintuitive performance limits arise in cases of absolute judgement of physical dimensions. Examples occur in connection with colour coding of objects and the use of tones in auditory call systems. The point is that relative judgement is far superior to absolute judgement. The problem with absolute judgement is that the code has to be translated into another category. Thus a specific colour may be linked with an electrical resistance value or a specific tone may be intended for a person for which an ensuing message is meant. In fact, therefore, the problem is not one of perceptual identification but rather of response choice, which will be discussed later in this article. At this point it suffices to remark that one should not use more than four or five colours or pitches so as to avoid errors. When more alternatives are needed one may add extra dimensions, like loudness, duration and components of tones.

Word reading

The relevance of reading separate word units in traditional print is demonstrated by various widely experienced evidence, such as the fact that reading is very much hampered when spaces are omitted, printing errors remain often undetected, and it is very hard to read words in alternating cases (e.g., ALTeRnAtInG). Some investigators have emphasized the role of word shape in reading word units and suggested that spatial frequency analysers may be relevant in identifying word shape. In this view meaning would be derived from total word shape rather than by letter-by-letter analysis. Yet, the contribution of word shape analysis is probably limited to small common words—articles and endings—which is consistent with the finding that printing errors in small words and endings have a relatively low probability of detection.

Text in lower case has an advantage over upper case which is due to a loss of features in the upper case. Yet, the advantage of lower case words is absent or may even be reversed when searching for a single word. It could be that factors of letter size and letter case are confounded in searching: Larger-sized letters are detected more rapidly, which may offset the disadvantage of less distinctive features. Thus, a single word may be about equally legible in upper case as in lower case, while continuous text is read faster in lower case. Detecting a SINGLE capital word amidst many lower case words is very efficient, since it evokes pop-out. An even more efficient fast detection can be achieved by printing a single lower case word in bold, in which case the advantages of pop-out and of more distinctive features are combined.

The role of encoding features in reading is also clear from the impaired legibility of older low-resolution visual display unit screens, which consisted of fairly rough dot matrices and could portray alphanumericals only as straight lines. The common finding was that reading text or searching from a low-resolution monitor was considerably slower than from a paper-printed copy. The problem has largely disappeared with the present-day higher-resolution screens. Besides letter form there are a number of additional differences between reading from paper and reading from a screen. The spacing of the lines, the size of the characters, the type face, the contrast ratio between characters and background, the viewing distance, the amount of flicker and the fact that changing pages on a screen is done by scrolling are some examples. The common finding that reading is slower from computer screens—although comprehension seems about equal—may be due to some combination of these factors. Present-day text processors usually offer a variety of options in font, size, colour, format and style; such choices could give the false impression that personal taste is the major reason.

Icons versus words

In some studies the time taken by a subject in naming a printed word was found to be faster than that for a corresponding icon, while both times were about equally fast in other studies. It has been suggested that words are read faster than icons since they are less ambiguous. Even a fairly simple icon, like a house, may still elicit different responses among subjects, resulting in response conflict and, hence, a decrease in reaction speed. If response conflict is avoided by using really unambiguous icons the difference in response speed is likely to disappear. It is interesting to note that as traffic signs, icons are usually much superior to words, even in the case where the issue of understanding language is not seen as a problem. This paradox may be due to the fact that the legibility of traffic signs is largely a matter of the distance at which a sign can be identified. If properly designed, this distance is larger for symbols than for words, since pictures can provide considerably larger differences in shape and contain less fine details than words. The advantage of pictures, then, arises from the fact that discrimination of letters requires some ten to twelve minutes of arc and that feature detection is the initial prerequisite for discrimination. At the same time it is clear that the superiority of symbols is only guaranteed when (1) they do indeed contain little detail, (2) they are sufficiently distinct in shape and (3) they are unambiguous.

Capabilities and Limits for Decision

Once a precept has been identified and interpreted it may call for an action. In this context the discussion will be limited to deterministic stimulus-response relations, or, in other words, to conditions in which each stimulus has its own fixed response. In that case the major problems for equipment design arise from issues of compatibility, that is, the extent to which the identified stimulus and its related response have a “natural” or well-practised relationship. There are conditions in which an optimal relation is intentionally aborted, as in the case of abbreviations. Usually a contraction like abrvtin is much worse than a truncation like abbrev. Theoretically, this is due to the increasing redundancy of successive letters in a word, which allows “filling out” final letters on the basis of earlier ones; a truncated word can profit from this principle while a contracted one cannot.

Mental models and compatibility

In most compatibility problems there are stereotypical responses derived from generalized mental models. Choosing the null position in a circular display is a case in point. The 12 o’clock and 9 o’clock positions appear to be corrected faster than the 6 o’clock and 3 o’clock positions. The reason may be that a clockwise deviation and a movement in the upper part in the display are experienced as “increases” requiring a response that reduces the value. In the 3 and 6 o’clock positions both principles conflict and they may therefore be handled less efficiently. A similar stereotype is found in locking or opening the rear door of a car. Most people act on the stereotype that locking requires a clockwise movement. If the lock is designed in the opposite way, continuous errors and frustration in trying to lock the door are the most likely result.

With respect to control movements the well-known Warrick’s principle on compatibility describes the relation between the location of a control knob and the direction of the movement on a display. If the control knob is located to the right of the display, a clockwise movement is supposed to move the scale marker up. Or consider moving window displays. According to most people’s mental model, the upward direction of a moving display suggests that the values go up in the same way in which a rising temperature in a thermometer is indicated by a higher mercury column. There are problems in implementing this principle with a “fixed pointer-moving scale” indicator. When the scale in such an indicator moves down, its value is intended to increasing. Thus a conflict with the common stereotype occurs. If the values are inverted, the low values are on the top of the scale, which is also contrary to most stereotypes.

The term proximity compatibility refers to the correspondence of symbolic representations to people’s mental models of functional or even spatial relationships within a system. Issues of proximity compatibility are more pressing as the mental model of a situation is more primitive, global or distorted. Thus, a flow diagram of a complex automated industrial process is often displayed on the basis of a technical model which may not correspond at all with the mental model of the process. In particular, when the mental model of a process is incomplete or distorted, a technical representation of the progress adds little to develop or correct it. A daily-life example of poor proximity compatibility is an architectural map of a building that is intended for viewer orientation or for showing fire escape routes. These maps are usually entirely inadequate—full of irrelevant details—in particular for people who have only a global mental model of the building. Such convergence between map reading and orientation comes close to what has been called “situational awareness”, which is particularly relevant in three-dimensional space during an air flight. There have been interesting recent developments in three-dimensional object displays, representing attempts to achieve optimal proximity compatibility in this domain.

Stimulus-response compatibility

An example of stimulus-response (S-R) compatibility is typically found in the case of most text processing programs, which assume that operators know how commands correspond to specific key combinations. The problem is that a command and its corresponding key combination usually fail to have any pre-existing relation, which means that the S-R relations must be learned by a painstaking process of paired-associate learning. The result is that, even after the skill has been acquired, the task remains error-prone. The internal model of the program remains incomplete since less practised operations are liable to be forgotten, so that the operator can simply not come up with the appropriate response. Also, the text produced on the screen usually does not correspond in all respects to what finally appears on the printed page, which is another example of inferior proximity compatibility. Only a few programs utilize a stereotypical spatial internal model in connection with stimulus-response relations for controlling commands.

It has been correctly argued that there are much better pre-existing relations between spatial stimuli and manual responses—like the relation between a pointing response and a spatial location, or like that between verbal stimuli and vocal responses. There is ample evidence that spatial and verbal representations are relatively separate cognitive categories with little mutual interference but also with little mutual correspondence. Hence, a spatial task, like formatting a text, is most easily performed by spatial mouse-type movement, thus leaving the keyboard for verbal commands.

This does not mean that the keyboard is ideal for carrying out verbal commands. Typing remains a matter of manually operating arbitrary spatial locations which are basically incompatible with processing letters. It is actually another example of a highly incompatible task which is only mastered by extensive practise, and the skill is easily lost without continuous practice. A similar argument can be made for shorthand writing, which also consists of connecting arbitrary written symbols to verbal stimuli. An interesting example of an alternative method of keyboard operation is a chording keyboard. 

The operator handles two keyboards (one for the left and one for the right hand) both consisting of six keys. Each letter of the alphabet corresponds to a chording response, that is, a combination of keys. The results of studies on such a keyboard showed striking savings in the time needed for acquiring typing skills. Motor limitations limited the maximal speed of the chording technique but, still, once learned, operator performance approached the speed of the conventional technique quite closely.

A classical example of a spatial compatibility effect concerns the traditional arrangements of stove burner controls: four burners in a 2 × 2 matrix, with the controls in a horizontal row. In this configuration, the relations between burner and control are not obvious and are poorly learned. However, despite many errors, the problem of lighting the stove, given time, can usually be solved. The situation is worse when one is faced with undefined display-control relations. Other examples of poor S-R compatibility are found in the display-control relations of video cameras, video recorders and television sets. The effect is that many options are never used or must be studied anew at each new trial. The claim that “it is all explained in the manual”, while true, is not useful since, in practice, most manuals are incomprehensible to the average user, in particular when they attempt to describe actions using incompatible verbal terms.

Stimulus-stimulus (S-S) and response-response (R-R) compatibility

Originally S-S and R-R compatibility were distinguished from S-R compatibility. A classical illustration of S-S compatibility concerns attempts in the late forties to support auditory sonar by a visual display in an effort to enhance signal detection. One solution was sought in a horizontal light beam with vertical perturbations travelling from left to right and reflecting a visual translation of the auditory background noise and potential signal. A signal consisted of a slightly larger vertical perturbation. The experiments showed that a combination of the auditory and visual displays did not do better than the single auditory display. The reason was sought in a poor S-S compatibility: the auditory signal is perceived as a loudness change; hence visual support should correspond most when provided in the form of a brightness change, since that is the compatible visual analogue of a loudness change.

It is of interest that the degree of S-S compatibility corresponds directly to how skilled subjects are in cross-modality matching. In a cross-modality match, subjects may be asked to indicate which auditory loudness corresponds to a certain brightness or to a certain weight; this approach has been popular in research on scaling sensory dimensions, since it allows one to avoid mapping sensory stimuli to numerals. R-R compatibility refers to correspondence of simultaneous and also of successive movements. Some movements are more easily coordinated than others, which provides clear constraints for the way a succession of actions—for example, successive operation of controls—is most efficiently done.

The above examples show clearly how compatibility issues pervade all user-machine interfaces. The problem is that the effects of poor compatibility are often softened by extended practice and so may remain unnoticed or underestimated. Yet, even when incompatible display-control relations are well-practised and do not seem to affect performance, there remains the point of a larger error probability. The incorrect compatible response remains a competitor for the correct incompatible one and is likely to come through on occasion, with the obvious risk of an accident. In addition, the amount of practice required for mastering incompatible S-R relations is formidable and a waste of time.

Limits of Motor Programming and Execution

One limit in motor programming was already briefly touched upon in the remarks on R-R compatibility. The human operator has clear problems in carrying out incongruent movement sequences, and in particular, changing from the one to another incongruent sequence is hard to accomplish. The results of studies on motor coordination are relevant to the design of controls in which both hands are active. Yet, practice can overcome much in this regard, as is clear from the surprising levels of acrobatic skills.

Many common principles in the design of controls derive from motor programming. They include the incorporation of resistance in a control and the provision of feedback indicating that it has been properly operated. A preparatory motor state is a highly relevant determinant of reaction time. Reacting to an unexpected sudden stimulus may take an additional second or so, which is considerable when a fast reaction is needed—as in reacting to a lead car’s brake light. Unprepared reactions are probably a main cause of chain collisions. Early warning signals are beneficial in preventing such collisions. A major application of research on movement execution concerns Fitt’s law, which relates movement, distance and the size of the target that is aimed at. This law appears to be quite general, applying equally to an operating lever, a joystick, a mouse or a light pen. Among others, it has been applied to estimate the time needed to make corrections on computer screens.

There is obviously much more to say than the above sketchy remarks. For instance, the discussion has been almost fully limited to issues of information flow on the level of a simple choice reaction. Issues beyond choice reactions have not been touched upon, nor problems of feedback and feed forward in the ongoing monitoring of information and motor activity. Many of the issues mentioned bear a strong relation to problems of memory and of planning of behaviour, which have not been addressed either. More extensive discussions are found in Wickens (1992), for example.


Joke H. Grady-van den Nieuwboer

In designing a product or an industrial process, one focuses on the “average” and “healthy” worker. Information regarding human abilities in terms of muscular strength, bodily flexibility, length of reach, and many other characteristics is for the most part derived from empirical studies carried out by military recruitment agencies, and reflects measured values valid for the typical young male in his twenties. But working populations, to be sure, consist of people of both sexes and a broad range of ages, to say nothing of a variety of physical types and abilities, levels of fitness and health, and functional capacities. A classification of the varieties of functional limitation among people as outlined by the World Health Organization is given in the accompanying box. At present, industrial design for the most part takes insufficient account of the general abilities (or inabilities, for that matter) of workers at large, and should take as its point of departure a broader human average as a basis for design. Clearly, a suitable physical load for a 20-year-old may exceed the capacity to manage of a 15-year-old or a 60-year-old. It is the business of the designer to consider such differences not only from the point of view of efficiency, but with a eye to the prevention of job-related injury and illness.

The International Classification of Functional Limitation in People

The WHO (World Health Organization) introduced in 1980 a classification of functional limitation in people; the ICIDH (International Classification Impairment, Disability and Handicap). In this classification a difference is made between illness, limitations and handicap.

This reference model was created to facilitate international communication. The model was presented on the one hand to offer a reference framework for policy makers and on the other hand, to offer a reference framework for doctors diagnosing people suffering from the consequences of illness.

Why this reference framework? It arose with the aim of trying to improve and increase the participation of people with long-term limited abilities. Two aims are mentioned:

·  the rehabilitation perspective, i.e., the reintegration of people into society, whether this means work, school, household, etc.

·  the prevention of illness and where possible the consequences of illness e.g., disability and handicap.

As of January 1st, 1994 the classification is official. The activities that have followed, are widespread and especially concerned with issues such as: information and educational measures for specific groups; regulations for the protection of workers; or, for instance, demands that companies should employ, for example, at least 5 per cent of workers with a disability. The classification itself leads in the long term to integration and non-discrimination.


Illness strikes each of us. Certain illnesses can be prevented, others not. Certain illnesses can be cured, others not. Where possible illness should be prevented and if possible cured.


Impairment means every absence or abnormality of a psychological, physiological or anatomic structure or function.

Being born with three fingers instead of five does not have to lead to disability. The capabilities of the individual, and the degree of manipulation possible with the three fingers, will determine whether or not the person is disabled. When, however, a fair amount of signal processing is not possible on a central level in the brain, then impairment will certainly lead to disability as at present there is no method to “cure” (solve) this problem for the patient.


Disability describes the functional level of an individual having difficulty in task performance e.g., difficulty standing up from their chair. These difficulties are of course related to the impairment, but also to the circumstances surrounding it. A person who uses a wheelchair and lives in a flat country like the Netherlands has more possibilities for self-transportation than the same person living in a mountainous area like Tibet.


When the problems are placed on a handicap level, it can be determined in which field the main problems are effective e.g., immobility or physical dependency. These can affect work performance; for example the person may not be able to get themselves to work; or, once at work, might need assistance in personal hygiene, etc.

A handicap shows the negative consequences of disability and can only be solved by taking the negative consequences away.

Summary and conclusions

The above-mentioned classification and the policies thereof offer a well defined international workable framework. Any discussion on designing for specific groups will need such a framework in order to define our activities and try to implement these thoughts in design.

The progress of technology has brought about the state of affairs that, of all the workplaces in Europe and North America, 60% involve the seated position. The physical load in work situations is now on average far less than before, but many worksites, nonetheless, call for physical loads that cannot be sufficiently reduced to fit human physical capabilities; in some developing countries, the resources of current technology are simply not available to relieve the human physical burden to any appreciable extent. And in technologically advanced countries, it is still a common problem that a designer will adapt his or her approach to constraints imposed by product specifications or production processes, either slighting or leaving out human factors related to disability and the prevention of harm due to the workload. With respect to these aims, designers have to be educated to devote attention to all such human factors, expressing the results of their study in a product requirements document (PRD). The PRD contains the system of demands which the designer has to meet in order to achieve both the expected product quality level and the satisfaction of human capability needs in the production process. While it is unrealistic to demand a product that matches a PRD in every respect, given the need of unavoidable compromises, the design method suited to the closest approach to this goal is the system ergonomic design (SED) method, to be discussed following a consideration of two alternative design approaches.

Creative Design

This design approach is characteristic of artists and others involved in the production of work of a high order of originality. The essence of this design process is that a concept is worked out intuitively and through “inspiration”, allowing problems to be dealt with as they arise, without conscious deliberation beforehand. Sometimes, the outcome will not resemble the initial concept, but nonetheless represents what the creator regards as his or her authentic product. Not seldom, too, the design is a failure. Figure 29.46  illustrates the route of creative design.

Figure 29.46 Creative design

System Design

System design arose from the need to predetermine the steps in design in a logical order. As design becomes complex, it has to be subdivided into subtasks. Designers or subtask teams thus become interdependent, and design becomes the job of a design team rather than an individual designer. Complementary expertise is distributed through the team, and design assumes an interdisciplinary character.

System design is oriented to the optimal realization of complex and well-defined product functions through the selection of the most appropriate technology; it is costly, but the risks of failure are considerably reduced as compared with less organized approaches. The efficacy of the design is measured against the goals formulated in the PRD.

The way in which the specifications formulated in the PRD are of the first importance. Figure 29.47  illustrates the relationship between the PRD and other parts of the system design process.

Figure 29.47 System design

As this scheme shows, the input of the user is neglected. Only at the end of the design process can the user criticize the design. This is unhelpful to both producer and user, since one has to wait for the next design cycle (if there is one) before errors can be corrected and modifications made. Furthermore, user feedback is seldom systematized and imported into a new PRD as a design influence.

System ergonomic design (SED)

SED is a version of system design adapted to ensure that the human factor is accounted for in the design process. Figure 29.48  illustrates the flow of user input into the PRD.

Figure 29.48 System ergonomic design

In system ergonomic design, the human being is considered part of the system: design specification changes are, in fact, made in consideration of the worker’s abilities with respect to cognitive, physical and mental aspects, and the method lends itself as an efficient design approach for any technical system where human operators are employed.

For example, to examine the implications of the worker’s physical abilities, task-allocation in the design of the process will call for a careful selection of tasks to be performed by the human operator or by the machine, each task being studied for its aptness to machine or human treatment. Clearly, the human worker will be more effective at interpreting incomplete information; machines however calculate much more rapidly with prepared data; a machine is the choice for lifting heavy loads; and so forth. Furthermore, since the user-machine interface can be tested at the prototype phase, one can eliminate design errors that would otherwise untimely manifest themselves at the phase of technical functioning.

Methods in User Research

No “best” method exists, nor any source of formulae and sure and certain guidelines, according to which design for disabled workers ought to be undertaken. It is a rather a common-sense business of making as exhaustive search of all obtainable knowledge relevant to the problem and of implementing it to its most evident best effect.

Information can be assembled from sources such as the following:

·     The literature of research results.

·     Direct observation of the disabled person at work and description of his or her particular work difficulties. Such observation should be made at a point in the worker’s schedule when he or she can be expected to be subject to fatigue—the end of a work shift, perhaps. The point is that any design solutions should be adapted to the most arduous phase of the work process, or else such phases may fail to be performed adequately (or at all) owing to the worker’s capacity having been physically exceeded.

·     The interview. One has to be aware of the possibly subjective responses which the interview per se may have the effect of eliciting. It is a far better approach that the interview technique be combined with observation. Disabled persons sometimes hesitate to discuss their difficulties, but when workers are aware that the investigator is willing to exert special thoroughness on their behalf, their reticence will diminish. This technique is time-consuming, but quite worthwhile.

·     Questionnaires. An advantage of the questionnaire is that it can be distributed to large groups of respondents and at the same time gather data of as specific a sort as one wishes to provide for. The questionnaire must, however, be constructed upon the basis of representative information pertaining to the group to which it will be administered. This means that the type of information to be sought must be obtained on the basis of interviews and observations carried out among a sample of workers and specialists that ought to be reasonably restricted as to size. In the case of disabled persons, it is sensible to include among such a sample the physicians and therapists who are involved with prescribing special aids for disabled persons and have examined them regarding their physical capabilities.

·     Physical measurements. Measurements obtained from instruments in the field of bio-instrumentation (e.g., the activity level of muscles, or the amount of oxygen consumed in a given task) and by anthropometrical methods (e.g., the linear dimensions of body elements, the range of motion of limbs, muscular strength) are of indispensable value in human-oriented work designs.

The methods described above are some of the various ways of gathering data about people. Methods exist, too, to evaluate user-machine systems. One of these—simulation—is to construct a realistic physical copy. The development of a more or less abstract symbolic representation of a system is an example of modelling. Such expedients, of course, are both useful and necessary when the actual system or product is not in existence or not accessible to experimental manipulation. Simulation is more often used for training purposes and modelling for research. A mock-up is a full-size, three-dimensional copy of the designed workplace composed, where necessary, of improvised materials, and is of great use in testing design possibilities with the proposed disabled worker: in fact, the majority of design problems can be identified with the aid of such a device. Another advantage to this approach is that the motivation of the worker grows as he or she participates in the design of his or her own future workstation.

Analysis of Tasks

In the analysis of tasks, different aspects of a defined job are subject to analytical observation. These manifold aspects include posture, routing of work manipulations, interactions with other workers, handling tools and operating machines, the logical order of subtasks, the efficiency of operations, static conditions (a worker may have to perform tasks in the same posture over a long time or with high frequency), dynamic conditions (calling for numerous varying physical conditions), material environmental conditions (as in a cold slaughterhouse) or non-material conditions (as with stressful work surroundings or the organization of the work itself).

Work design for the disabled person has, then, to be founded on a thorough task analysis as well as a full examination of the functional abilities of the disabled person. The basic design approach is a crucial issue: it is more efficient to elaborate all possible solutions for the problem in hand without prejudice than to produce a single design concept or a limited number of concepts. In design terminology, this approach is called making a morphological overview. Given the multiplicity of original design concepts, one can proceed to an analysis of the pro and con features of each possibility with respect to material use, construction method, technical production features, ease of manipulation, and so on. It is not unprecedented that more than one solution reaches the prototype stage and that a final decision is made at a relatively late phase in the design process.

Although this may seem a time-consuming way to realize design projects, in fact the extra work it entails is compensated for in terms of fewer problems encountered in the developmental stage, to say nothing that the result—a new workstation or product—will have embodied a better balance between the needs of the disabled worker and the exigencies of the working environment. Unfortunately, the latter benefit rarely if ever reaches the designer in terms of feedback.

Product Requirements Document (PRD) and Disability

After all information relating to a product has been assembled, it should be transformed into a description not only of the product but of all those demands which may be made of it, regardless of source or nature. These demands may of course be divided along various lines. The PRD should include demands relating to user-operator data (physical measurements, range of motion, range of muscular strength, etc.), technical data (materials, construction, production technique, safety standards, etc.), and even conclusions arising out of market feasibility studies.

The PRD forms the designer’s framework, and some designers regard it as an unwelcome restriction of their creativity rather than as a salutary challenge. In view of the difficulties at times accompanying the execution of a PRD, it should always be borne steadily in mind that a design failure causes distress for the disabled person, who may relinquish his or her efforts to succeed in the employment arena (or else fall helpless victim to the progress of the disabling condition), and additional costs for redesign as well. To this end, technical designers should not operate alone in their design work for the disabled, but should cooperate with whatever disciplines are needed for securing the medical and functional information to set up an integrated PRD as a framework for the design.

Prototype Testing

When a prototype is built, it should be tested for errors. Error testing should be carried out not only from the point of view of the technical system and subsystems, but also with a view to its usability in combination with the user. When the user is a disabled person, extra precautions have to be taken. An error to which an unimpaired worker may successfully respond in safety may not afford the disabled worker the opportunity of avoiding harm.

Prototype testing should be carried out on a small number of disabled workers (except in the case of a unique design) according to a protocol matched to the PRD. Only by such empirical testing can the degree to which the design meets the demands of the PRD be adequately judged. Although results on small numbers of subjects may not be generalizable to all cases, they do supply valuable information for the designer’s use in either the final design or in future designs.


The evaluation of a technical system (a work situation, machine or tool) should be judged on its PRD, not by questioning the user or even by attempting comparisons of alternative designs with respect to physical performance. For instance, the designer of a specific knee brace, basing his or her design on research results that show unstable knee joints to exhibit a delayed hamstring reaction, will create a product that compensates for this delay. But another brace may have different design aims. Yet present evaluation methods show no insight as to when to prescribe what kind of knee brace to which patients under what conditions—precisely the sort of insight a health professional needs when prescribing technical aids in the treatment of disabilities.

Current research aims at making this sort of insight possible. A model used to obtain insight into those factors which actually determine whether or not a technical aid ought to be used, or whether or not a worksite is well designed and equipped for the disabled worker is the Rehabilitation Technology Useability Model (RTUM). The RTUM model offers a framework to use in evaluations of existing products, tools or machines, but can also be used in combination with the design process as shown in figure 29.49 .

Figure 29.49 Rehabilitation Technology Useability Model (RTUM)  in combination with the system ergonomic design approach

Evaluations of existing products reveal that as regards technical aids and worksites, the quality of PRDs is very poor. At some times, the product requirements are not recorded properly; at others they are not developed to a useful extent. Designers simply must learn to start documenting their product requirements, including those relevant to disabled users. Note that, as figure 29.49 shows, RTUM, in conjunction with SED, offers a framework that includes the requirements of disabled users. Agencies responsible for prescribing products for their users must request industry to evaluate those product before marketing them, a task in essence impossible in the absence of product requirement specifications; figure 29.49  also shows how provision can be made to ensure that the end result can be evaluated as it should (on a PRD) with the help of the disabled person or group for whom the product is intended. It is up to national health organizations to stimulate designers to abide by such design standards and to formulate appropriate regulations.


Houshang Shahnavaz

Culture and technology are interdependent. While culture is indeed an important aspect in technology design, development and utilization, the relationship between culture and technology is, however, extremely complex. It needs to be analysed from several perspectives in order to be considered in the design and application of technology. Based on his work in Zambia, Kingsley (1983) divides technological adaptation into changes and adjustments at three levels: that of the individual, of the social organization and of the cultural value system of the society. Each level possesses strong cultural dimensions which require special design considerations.

At the same time, technology itself is an inseparable part of culture. It is built, wholly or in part, around the cultural values of a particular society. And as part of culture, technology becomes an expression of that society’s way of life and thinking. Thus, in order for technology to be accepted, utilized and acknowledged by a society as its own, it must be congruent to the overall image of that society’s culture. Technology must complement culture, not antagonize it.

This article will deal with some of the intricacies concerning cultural considerations in technology designs, examining the current issues and problems, as well as the prevailing concepts and principles, and how they can be applied.

Definition of Culture

The definition of the term culture has been debated at length amongst sociologists and anthropologists for many decades. Culture can be defined in many terms. Kroeber and Kluckhohn (1952) reviewed over a hundred definitions of culture. Williams (1976) mentioned culture as one of the most complicated words in the English language. Culture has even been defined as the entire way of life of people. As such, it includes their technology and material artefacts—anything one would need to know to become a functioning member of the society (Geertz 1973). It may even be described as “publicly available symbolic forms through which people experience and express meaning” (Keesing 1974). Summing it up, Elzinga and Jamison (1981) put it aptly when they said that “the word culture has different meanings in different intellectual disciplines and systems of thought”.

Technology: Part and Product of Culture

Technology can be considered both as part of culture and its product. More than 60 years ago the noted sociologist Malinowsky included technology as part of the culture and gave the following definition: “culture comprises inherited artefacts, goods, technical processes, ideas, habits and values.” Later, Leach (1965) considered technology as a cultural product and mentioned “artefacts, goods and technical processes” as “products of culture”.

In the technological realm, “culture” as an important issue in the design, development and utilization of technical products or systems has been largely neglected by many suppliers as well as receivers of technology. One major reason for this neglect is the absence of basic information on cultural differences.

In the past, technological changes have led to significant changes in social life and organization and in people’s value systems. Industrialization has made deep and enduring changes in the traditional lifestyles of many previously agricultural societies since such lifestyles were largely regarded as incompatible with the way industrial work should be organized. In situations of large cultural diversity, this has led to various negative socio-economic outcomes (Shahnavaz 1991). It is now a well-established fact that simply to impose a technology on a society and believe that it will be absorbed and utilized through extensive training is wishful thinking (Martin et al. 1991). 

It is the responsibility of the technology designer to consider the direct and indirect effects of the culture and to make the product compatible with the cultural value system of the user and with its intended operating environment.

The impact of technology for many “industrially developing countries” (IDCs) has been much more than improvement in efficiency. Industrialization was not just modernization of the production and service sectors, but to some extent Westernization of the society. Technology transfer is, thus, also cultural transfer.

Culture, in addition to religion, tradition and language, which are important parameters for technology design and utilization, encompasses other aspects, such as specific attitudes towards certain products and tasks, rules of appropriate behaviour, rules of etiquette, taboos, habits and customs. All these must be equally considered for optimum design.

It is said that people are also products of their distinctive cultures. Nevertheless, the fact remains that world cultures are very much interwoven due to human migration throughout history. It is small wonder that there exist more cultural than national variations in the world. Nevertheless, some very broad distinctions can be made regarding societal, organizational and professional culture-based differences that could influence design in general.

Constraining Influences of Culture

There is very little information on both theoretical and empirical analyses of the constraining influences of culture on technology and how this issue should be incorporated in the design of hardware and software technology. Even though the influence of culture on technology has been recognized (Shahnavaz 1991; Abeysekera, Shahnavaz and Chapman 1990; Alvares 1980; Baranson 1969), very little information is available on the theoretical analysis of cultural differences with regard to technology design and utilization. There are even fewer empirical studies that quantify the importance of cultural variations and provide recommendations on how cultural factors should be considered in the design of product or system (Kedia and Bhagat 1988). Nevertheless, culture and technology can still be studied with some degree of clarity when viewed from different sociological viewpoints.

Culture and Technology: Compatibility and Preference

Proper application of a technology depends, to a large extent, on the compatibility of the user’s culture with the design specifications. Compatibility must exist at all levels of culture—at the societal, organizational and professional levels. In turn, cultural compatibility can have strong influence on a people’s preferences and aptness to utilize a technology. This question involves preferences relating to a product or system; to concepts of productivity and relative efficiency; to change, achievement and authority; as well as to the manner of technology utilization. Cultural values can thus affect people’s willingness and ability to select, to use and to control technology. They have to be compatible in order to be preferred.

Societal culture

As all technologies are inevitably associated with sociocultural values, the cultural receptivity of the society is a very important issue for the proper functioning of a given technological design (Hosni 1988). National or societal culture, which contributes to the formation of a collective mental model of people, influences the entire process of technology design and application, which ranges from planning, goal setting and defining design specifications, to production, management and maintenance systems, training and evaluation. Technology design of both hardware and software should, therefore, reflect society-based cultural variations for maximum benefit. However, defining such society-based cultural factors for consideration in the design of technology is a very complicated task. Hofstede (1980) has proposed four dimensional framework variations of national-based culture.

1.     Weak versus strong uncertainty avoidance. This concerns a people’s desire to avoid ambiguous situations and to what extent their society has developed formal means (such as rules and regulations) to serve this purpose. Hofstede (1980) gave, for example, high uncertainty avoidance scores to countries like Japan and Greece, and low scores to Hong Kong and Scandinavia.

2.     Individualism versus collectivism. This pertains to the relationship between individuals and organizations in the society. In individualistic societies, the orientation is such that each person is expected to look after his or her own interests. In contrast, in a collectivist culture, social ties between people are very strong. Some examples of individualistic countries are the United States and Great Britain while Colombia and Venezuela can be considered as having collectivist cultures.

3.     Small versus large power distance. A large “power distance” characterizes those cultures where the less powerful individuals accept the unequal distribution of power in a culture, as well as the hierarchies in the society and its organizations. Examples of large power distance countries are India and the Philippines. Small power distances are typical of countries like Sweden and Austria.

4.     Masculinity versus femininity. Cultures that put more emphasis on material achievements are regarded as belonging to the former category. Those giving more value to quality of life and other less tangible outcomes belong to the latter.

Glenn and Glenn (1981) have also distinguished between “abstractive” and “associative” tendencies in a given national culture. It is argued that when people of an associative culture (like those from Asia) approach a cognitive problem, they put more emphasis on context, adapt a global thinking approach and try to utilize association among various events. Whereas in the Western societies, a more abstractive culture of rational thinking predominates. Based on these cultural dimensions, Kedia and Bhagat (1988) have developed a conceptual model for understanding cultural constraints on technology transfer. They have developed various descriptive “propositions” which provide information on different countries’ cultural variations and their receptivity with regard to technology. Certainly many cultures are moderately inclined to one or the other of these categories and contain some mixed features.

Consumers’ as well as producers’ perspectives upon technological design and utilization are directly influenced by the societal culture. Product safety standards for safeguarding consumers as well as work-environment regulations, inspection and enforcement systems for protecting the producers are to a large extent the reflection of the societal culture and value system.

Organizational culture

A company’s organization, its structure, value system, function, behaviour, and so on, are largely cultural products of the society in which it operates. This means that what happens within an organization is mostly a direct reflection of what is happening in the outside society (Hofstede 1983). The prevailing organizations of many companies operating in the IDCs are influenced both by the characteristics of the technology producer country as well as those of the technology recipient environment. However, the reflection of the societal culture in a given organization can vary. Organizations interpret the society in terms of their own culture, and their degree of control depends, among other factors, on the modes of technology transfer.

Given the changing nature of organization today, plus a multicultural, diverse workforce, adapting a proper organizational programme is more important than ever before to a successful operation (an example of a workforce diversity management programme is described in Solomon (1989)).

Professional culture

People belonging to a certain professional category may use a piece of technology in a specific fashion. Wikström et al. (1991), in a project aimed to develop hand tools, have noted that despite the designers’ assumption of how plate shares are to be held and used (i.e., with a forward holding grip and the tool moving away from one’s own body), the professional tinsmiths were holding and using the plate share in a reversed manner, as shown in figure 29.50 . They concluded that tools should be studied in the actual field conditions of the user population itself in order to acquire relevant information on the tools characteristics.

Figure 29.50 The use of plate share tools by professional tinsmiths in practice (the reversed grip)

Using Cultural Features for Optimum Design

As implied by the foregoing considerations, culture provides identity and confidence. It forms opinions about the objectives and characteristics of a “human-technology system” and how it should operate in a given environment. And in any culture, there are always some features that are valuable with regard to technological progress. If these features are considered in the design of software and hardware technology, they can act as the driving force for technology absorption in the society. One good example is the culture of some southeast Asian countries largely influenced by Confucianism and Buddhism. The former emphasizes, among other things, learning and loyalty, and considers it a virtue to be able to absorb new concepts. The latter teaches the importance of harmony and respect for fellow human beings. It is said that these unique cultural features have contributed to the provision of the right environment for the absorption and implementation of advanced hardware and organizational technology furnished by the Japanese (Matthews 1982).

A clever strategy would thus make the best use of the positive features of a society’s culture in promoting ergonomic ideas and principles. According to McWhinney (1990) “the events, to be understood and thus used effectively in projection, must be embedded in stories. One must go to varying depths to unleash founding energy, to free society or organization from inhibiting traits, to find the paths along which it might naturally flow. . . . Neither planning nor change can be effective without embedding it consciously in a narrative.”

A good example of cultural appreciation in designing management strategy is the implementation of the “seven tools” technique for quality assurance in Japan. The “seven tools” are the minimum weapons a samurai warrior had to carry with him whenever he went out to fight. The pioneers of “quality control circles”, adapting their nine recommendations to a Japanese setting, reduced this number in order to take advantage of a familiar term—“the seven tools”—so as to encourage the involvement of all employees in their quality work strategy (Lillrank and Kano 1989).

However, other cultural features may not be beneficial to technological development. Discrimination against women, the strict observation of a caste system, racial or other prejudice, or considering some tasks as degrading, are a few examples that can have a negative influence on technology development. In some traditional cultures, men are expected to be the primary wage-earners. They become accustomed to regarding the role of women as equal employees, not to mention as supervisors, with insensitivity or even hostility. Withholding equal employment opportunity from women and questioning the legitimacy of women’s authority is not appropriate to the current needs of organizations, which require optimum utilization of human resources.

With regard to task design and job content, some cultures consider tasks like manual labour and service as degrading. This may be attributed to past experiences linked to colonial times regarding “master-slave relationships”. In some other cultures, strong biases exist against tasks or occupations associated with “dirty hands”. These attitudes are also reflected in lower-than-average pay scales for these occupations. In turn, these have contributed to shortages of technicians or inadequate maintenance resources (Sinaiko 1975).

Since it usually takes many generations to change cultural values with respect to a new technology, it would be more cost-effective to fit the technology to the technology recipient’s culture, taking cultural differences into consideration in the design of hardware and software.

Cultural Considerations in Product and System Designing

By now it is obvious that technology consists both of hardware and software. Hardware components include capital and intermediary goods, such as industrial products, machinery, equipment, buildings, workplaces and physical layouts, most of which chiefly concern the micro-ergonomics domain. Software pertains to programming and planning, management and organizational techniques, administration, maintenance, training and education, documentation and services. All these concerns fall under the heading of macro-ergonomics.

A few examples of cultural influences that require special design consideration from the micro- and macro-ergonomic point of view are given below.

Micro-ergonomic issues

Micro-ergonomics is concerned with the design of a product or system with the objective of creating a “usable” user-machine-environment interface. The major concept of product design is usability. This concept involves not only the functionality and reliability of the product, but issues of safety, comfort and enjoyment as well.

The user’s internal model (i.e., his or her cognitive or mental model) plays an important role in usability design. To operate or control a system efficiently and safely, the user must have an accurate representative cognitive model of the system in use. Wisner (1983) has stated that “industrialization would thus more or less require a new kind of mental model.” In this view, formal education and technical training, experience as well as culture are important factors in determining the formation of an adequate cognitive model.

Meshkati (1989), in studying the micro- and macro-ergonomic factors of the 1984 Union Carbide Bhopal accident, highlighted the importance of culture on the Indian operators’ inadequate mental model of the plant operation. He stated that part of the problem may have been due to “the performance of poorly trained Third World operators using advanced technological systems designed by other humans with much different educational backgrounds, as well as cultural and psychosocial attributes.” Indeed, many design usability aspects at the micro-interface level are influenced by the user’s culture. Careful analyses of the user’s perception, behaviour and preferences would lead to a better understanding of the user’s needs and requirements for designing a product or system that is both effective and acceptable.

Some of these culture-related micro-ergonomic aspects are the following:

1.     Interface design. Human emotion is an essential element of product design. It is concerned in such factors as colour and shape (Kwon, Lee and Ahn 1993; Nagamachi 1992). Colour is regarded as the most important factor to do with human emotions with regard to product design. The product’s colour treatment reflects the psychological and sentimental dispositions of the users, which differ from country to country. The symbolism of colour may also differ. For example, the colour red, which indicates danger in Western countries, is an auspicious token in India (Sen 1984) and symbolizes joy or happiness in China.  Pictorial signs and symbols that are used in many different applications for public accommodations are strongly culture related. Western pictorial information, for example, is difficult to interpret by non-Western people (Daftuar 1975; Fuglesang 1982).

2.     Control/display compatibility. Compatibility is a measure of how well spatial movements of control, display behaviour or conceptual relationships meet human expectations (Staramler 1993). It refers to the user’s expectation of the stimulus-response relationship, which is a fundamental ergonomic issue for safe and efficient operation of a product or system. A compatible system is one which considers people’s common perceptual-motor behaviour (i.e., their population-stereotype). However, like other human behaviour, perceptual-motor behaviour may also be influenced by culture. Hsu and Peng (1993) compared American and Chinese subjects regarding control/burner relationships in a four-burner stove. Different population-stereotype patterns were observed. They conclude that population stereotypes regarding control/burner linkages were culturally different, probably as a result of differences in reading or scanning habits.

3.     Workplace design. An industrial workstation design aims to eliminate harmful postures and improve user performance in relation to the user’s biological needs, preferences and task requirements. People from different cultures may prefer different types of sitting posture and work heights. In Western countries, work heights are set near the seated elbow height for maximum comfort and efficiency. However, in many parts of the world people sit on the floor. Indian workers, for example, prefer squatting or sitting cross-legged to standing or to sitting on a chair. In fact it has been observed that even when chairs are provided, the operators still prefer to squat or sit cross-legged on the seats. Daftuar (1975) and Sen (1984) have studied the merits and implications of the Indian sitting posture. After describing the various advantages of sitting on the floor, Sen stated that “as a large population of the world market covers societies where squatting or sitting on the ground predominate, it is unfortunate that up to now no modern machines have been designed to be used in this way.” Thus, variations in preferred posture should be considered in machine and workplace design in order to improve the operator’s efficiency and comfort.

4.     Design of protective equipment. There exist both psychological and physical constraints with regard to wearing protective clothing. In some cultures, for example, jobs requiring the use of protective wear may be regarded as common labour, suitable only for unskilled workers. Consequently, protective equipment is usually not worn by engineers at workplaces in such settings. Regarding physical constraints, some religious groups, obliged by their religion to wear a head covering (like the turbans of Indian Sikhs or the head covers of Muslim women) find it difficult to wear, for example, protective helmets. Therefore, special designs of protective wear are needed to cope with such cultural variations in protecting people against work-environmental hazards.

Macro-ergonomic issues

The term macro-ergonomics refers to the design of software technology. It concerns the proper design of organizations and management systems. Evidence exists showing that because of differences in culture, sociopolitical conditions and educational levels, many successful managerial and organizational methods developed in industrialized countries cannot be successfully applied to developing countries (Negandhi 1975). In most IDCs, an organizational hierarchy characterized by a down-flow of authority structure within the organization is a common practice. It has little concern for Western values such as democracy or power sharing in decision-making, which are regarded as key issues in modern management, being essential for proper utilization of human resources as regards intelligence, creativity, problem solving potential and ingenuity.

The feudal system of social hierarchy and its value system are also widely practised in most industrial workplaces in the developing countries. These make a participatory management approach (which is essential for the new production mode of flexible specialization and the motivation of the workforce) a difficult endeavour. However, there are reports confirming the desirability of introducing autonomous work systems even in these cultures Ketchum 1984).

1.     Participatory ergonomics. Participatory ergonomics is a useful macro-ergonomics approach for solving various work-related problems (Shahnavaz, Abeysekera and Johansson 1993; Noro and Imada 1991; Wilson 1991). This approach, mostly used in industrialized countries, has been applied in different forms depending on the organizational culture in which it has been implemented. In a study, Liker, Nagamachi and Lifshitz (1988) compared participatory ergonomics programmes in two US and two Japanese manufacturing plants which were aiming to reduce physical stress on workers. They concluded that an “effective participatory ergonomics programme can take many forms. The best programme for any plant in any culture may depend on its own unique history, structure and culture.”

2.     Software systems. Societal and organizational culture-based differences should be considered in designing a new software system or introducing a change in the organization. With respect to information technology, De Lisi (1990) indicates that networking capabilities will not be realized unless the networks fit the existing organizational culture.

3.     Work organization and management. In some cultures, the family is so important an institution that it plays a prominent role in work organization. For example, among some communities in India, a job is generally regarded as a family responsibility and is collectively performed by all family members (Chapanis 1975).

4.     Maintenance system. Design of maintenance programmes (both preventive and regular) as well as housekeeping are other examples of areas in which work organization should be adapted to cultural constraints. The traditional culture among the sort of agricultural societies predominant in many IDCs is generally not compatible with the requirements of industrial work and how activities are organized. Traditional agricultural activity does not require, for example, formal maintenance programming and precision work. It is for the most part not carried out under time pressure. In the field, it is usually left to the recycling process of nature to take care of maintenance and housekeeping work. The design of maintenance programmes and housekeeping manuals for industrial activities should thus take these cultural constraints into account and provide for adequate training and supervision.

Zhang and Tyler (1990), in a case study related to the successful establishment of a modern telephone cable production facility in China supplied by a US firm (the Essex Company) stated that “both parties realize, however, that the direct application of American or Essex management practices was not always practical nor desirable due to cultural, philosophical, and political differences. Thus the information and instructions provided by Essex was often modified by the Chinese partner to be compatible with the conditions existing in China.” They also argued that the key to their success, despite cultural, economic and political differences, was both parties’ dedication and commitment to a common goal as well as the mutual respect, trust, and friendship which transcended any differences between them.

Design of shift and work schedules are other examples of work organization. In most IDCs there are certain sociocultural problems associated with shift work. These include poor general living and housing conditions, lack of support services, a noisy home environment and other factors, which require the design of special shift programmes. Furthermore, for female workers, a working day is usually much longer than eight hours; it consists of not only the actual time spent working, but also the time spent on travelling, working at home and taking care of children and elderly relatives. In view of the prevailing culture, shift and other work design requires special work-rest schedules for effective operation.

Flexibility in work schedules to allow cultural variances such as an after-lunch nap for Chinese workers and religious activities for Muslims are further cultural aspects of work organization. In the Islamic culture, people are required to break from work a few times a day to pray, and to fast for one month each year from sunrise to sunset. All these cultural constraints require special work organizational considerations.

Thus, many macro-ergonomic design features are closely influenced by culture. These features should be considered in the design of software systems for effective operation.

Conclusion: Cultural Differences in Design

Designing a usable product or system is not an easy task. There exists no absolute quality of suitability. It is the designer’s task to create an optimum and harmonic interaction between the four basic components of the human-technology system: the user, the task, the technological system and the operating environment. A system may be fully usable for one combination of user, task and environmental conditions but totally unsuitable for another. One design aspect which can greatly contribute to the design’s usability, whether it is a case of a single product or a complex system, is the consideration of cultural aspects which have a profound influence on both the user and the operating environment.

Even if a conscientious engineer designs a proper human-machine interface for use in a given environment, the designer is often unable to foresee the effects of a different culture on the product’s usability. It is difficult to prevent possible negative cultural effects when a product is used in an environment different from that for which it was designed. And since there exist almost no quantitative data regarding cultural constraints, the only way the engineer can make the design compatible with regard to cultural factors is to actively integrate the user population in the design process.

The best way to consider cultural aspects in design is for the designer to adapt a user-centred design approach. True enough, the design approach adapted by the designer is the essential factor that will instantly influence the usability of the designed system. The importance of this basic concept must be recognized and implemented by the product or system designer at the very beginning of the design life cycle. The basic principles of user-centred design can thus be summarized as follows (Gould and Lewis 1985; Shackel 1986; Gould et al. 1987; Gould 1988; Wang 1992):

1.     Early and continual focus on user. The user should be an active member of the design team throughout the whole product development life cycle (i.e., predesign, detail design, production, verification and product improvement phase).

2.     Integrated design. The system should be considered as a whole, ensuring a holistic design approach. This means that all aspects of the system’s usability should be evolved in parallel by the design team.

3.     Early and continuous user testing. User reaction should be tested using prototypes or simulations while carrying out real work in the real environment from early development stage to the final product.

4.     Iterative design. Designing, testing and redesigning are repeated in regular cycles until satisfactory usability results are achieved.

In the case of designing a product on a global scale, the designer has to consider the needs of consumers around the world. In such a case, access to all actual users and operating environments may not be possible for the purpose of adopting a user-centred design approach. The designer has to use a broad range of information, both formal and informal, such as literature reference material, standards, guidelines, and practical principles and experience in making an analytical evaluation of the design and has to provide sufficient adjustability and flexibility in the product in order to satisfy the needs of a wider user population.

Another point to consider is the fact that designers can never be all-knowing. They need input from not only the users but also other parties involved in the project, including managers, technicians, and repair and maintenance workers. In a participatory process, people involved should share their knowledge and experiences in developing a usable product or system and accept collective responsibility for its functionality and safety. After all, everyone involved has something at stake.


Antoine Laville and Serge Volkoff

The status of ageing workers varies according to their functional condition, which itself is influenced by their past working history. Their status also depends on the work post that they occupy, and the social, cultural and economic situation of the country in which they live.

Thus, workers who have to perform much physical labour are also, most often, those who have had the least schooling and the least occupational training. They are subject to exhausting work conditions, which can cause disease, and they are exposed to the risk of accidents. In this context, their physical capacity is very likely to decline towards the end of their active life, a fact that makes them more vulnerable at work.

Conversely, workers who have had the advantage of lengthy schooling, followed by occupational training that equips them for their work, in general practise trades where they can put to use the knowledge thus acquired and progressively widen their experience. Often they do not work in the most harmful occupational environments and their skills are recognized and valued as they grow older.

During a period of economic expansion and shortage of labour, ageing workers are recognized as having the qualities of “occupational conscientiousness”, being regular in their work, and being able to keep up their know-how. In a period of recession and unemployment, there will be greater emphasis on the fact that their work performance falls short of that of younger people and on their lower capacity to adapt to changes in work techniques and organization.

Depending on the countries concerned, their cultural traditions and their mode and level of economic development, consideration for ageing workers and solidarity with them will be more or less evident, and their protection will be more or less assured.

The time dimensions of the age/work relationship

The relationship between ageing and work covers a great diversity of situations, which can be considered from two points of view: on the one hand, work appears to be a transformation factor for the worker throughout his or her active life, the transformations being either negative (e.g., wear and tear, decline in skills, illnesses and accidents) or positive (e.g., acquisition of knowledge and experience); on the other hand, work reveals the changes connected with age, and this results in marginalization and even exclusion from the production system for older workers exposed to demands at work that are too great for their declining capacity, or on the contrary allows for progress in their working career if the content of the work is such that a high value is placed on experience.

Advancing age therefore plays the role of a “vector” on which events in life are registered chronologically, both at and outside work. Around this axis are hinged processes of decline and building, which are very variable from one worker to another. In order to take into account the problems of ageing workers in the design of work situations, it is necessary to take into account both the dynamic characteristics of changes connected with age and the variability of these changes among individuals.

The age/work relationship can be considered in the light of a threefold evolution:

1.     Work evolves. Techniques change; mechanization, automation, computerization and methods of information transfer, among other factors, tend or will tend to become more generalized. New products make their appearance, others disappear. New risks are revealed or extended (e.g., radiation and chemical products), others become less prominent. Work organization, labour management, the distribution of tasks and the work schedules are transformed. Some production sectors develop, while others decline. From one generation to another, the work situations encountered during the active life of the worker, the demands that they make and the skills that they require are not the same.

2.     Working populations change. Age structures are modified in accordance with demographic changes, the means of entering or retiring from work and attitudes towards employment. Women’s share in the working population continues to evolve. Genuine upheavals are occurring in the field of education, occupational training and access to the health system. All these transformations are at the same time producing generation-related and period-related effects which obviously influence the age/work relationship and which can to a certain extent be anticipated.

3.     Finally—a point that deserves emphasis—individual changes are in progress throughout one’s working life, and the adjustment between the characteristics of particular work and those of the people who carry it out is therefore frequently called into question.

Some processes of organic ageing and their relationship to work

The main organic functions involved in work decline in an observable way from the ages of 40 or 50, after some of them have undergone development up to the ages of 20 or 25.

In particular, a decline with age is observed in maximum muscular strength and range of joint movement. The reduction in strength is in the order of 15 to 20% between the ages of 20 and 60. But this is only an overall trend, and the variability among individuals is considerable. Moreover, these are maximum capacities; the decline is much less for more moderate physical demands.

One function that is very sensitive to age is regulation of posture. This difficulty is not very apparent for common and stable working positions (standing or sitting) but it becomes obvious in situations of disequilibrium that require precise adjustments, strong muscular contraction or joint movements at extreme angles. These problems become more severe when the work has to be carried out on unstable or slippery supports, or when the worker suffers a shock or unexpected jolt. The result is that accidents due to loss of balance become more frequent with age.

Sleep regulation becomes less reliable from the ages of 40 to 45 onwards. It is more sensitive to changes in working schedules (such as night work or shift work) and to disturbing environments (e.g., noise or lighting). Changes in the length and quality of sleep follow.

Thermoregulation also becomes more difficult with age, and this causes older workers to have specific problems with regard to work in heat, particularly when physically intense work has to be carried out.

Sensory functions begin to be affected very early, but the resulting deficiencies are rarely marked before the ages of 40 to 45. Visual function as a whole is affected: there is a reduction in the amplitude of accommodation (which can be corrected with appropriate lenses), and also in the peripheral visual field, perception of depth, resistance to glare and light transmission through the crystalline lens. The resulting inconvenience is noticeable only in particular conditions: in poor lighting, near sources of glare, with objects or texts of very small size or badly presented, and so on.

The decline in auditory function affects the hearing threshold for high frequencies (high-pitched sounds), but it reveals itself particularly as difficulty in discriminating sound signals in a noisy environment. Thus, the intelligibility of the spoken word becomes more difficult in the presence of ambient noise or strong reverberation.

The other sensory functions are, in general, little affected at this time of life.

It can be seen that, in a general way, organic decline with age is noticeable particularly in extreme situations, which should in any case be modified to avoid difficulties even for young workers. Moreover, ageing workers can compensate for their deficiencies by means of particular strategies, often acquired with experience, when the work conditions and organization permit: the use of additional supports for unbalanced postures, lifting and carrying loads in such a way as to reduce extreme effort, organizing visual scanning so as to pinpoint useful information, among other means.

Cognitive ageing: slowing down and learning

As regards cognitive functions, the first thing to note is that work activity brings into play basic mechanisms for receiving and processing information on the one hand, and on the other, knowledge acquired throughout life. This knowledge concerns mainly the meaning of objects, signals, words and situations (“declarative” knowledge), and ways of doing things (“procedural” knowledge).

Short-term memory allows us to retain, for some dozens of seconds or for some minutes, useful information that has been detected. Processing of this information is carried out by comparing it with knowledge that has been memorized on a permanent basis. Ageing acts on these mechanisms in various ways: (1) by virtue of experience, it enriches knowledge, the capacity to select in the best way both useful knowledge and the method of processing it, especially in tasks that are carried out fairly frequently, but (2) the time taken to process this information is lengthened owing both to ageing of the central nervous system, and to more fragile short-term memory.

These cognitive functions depend very much on the environment in which the workers have lived, and therefore on their past history, their training, and the work situations which they have had to face. The changes that occur with age are therefore manifested in extremely varied combinations of phenomena of decline and reconstruction, in which each of these two factors may be more or less accentuated.

If in the course of their working lives workers have received only brief training, and if they have had to carry out relatively simple and repetitive tasks, their knowledge will be limited and they have difficulties when confronted with new or relatively unfamiliar tasks. If, moreover, they have to perform work under marked time constraints, the changes that have occurred in their sensory functions and the slowing down of their information processing will handicap them. If, on the other hand, they have had lengthy schooling and training, and if they have had to carry out a variety of tasks, they will thereby have been able to enhance their skills so that the sensory or cognitive deficiencies associated with age will be largely compensated for.

It is therefore easy to understand the role played by continued training in the work situation of ageing workers. Changes in work make it necessary more and more often to have recourse to periodic training, but older workers rarely receive it. Firms frequently do not consider it worthwhile to give training to a worker nearing the end of his or her active life, particularly as learning difficulties are thought to increase with age. And the workers themselves hesitate to undergo training, fearing that they will not succeed, and not always seeing very clearly the benefits that they could derive from training.

In fact, with age, the manner of learning is modified. Whereas a young person records the knowledge transmitted to him, an older person needs to understand how this knowledge is organized in relation to what he or she already knows, what is its logic, and what is its justification for work. He or she also needs time to learn. Therefore one response to the problem of training older workers is, in the first place, to use different teaching methods, according to each person’s age, knowledge and experience, with, in particular, a longer training period for older people.

Ageing of men and women at work

Age differences between men and women are found at two different levels. At the organic level, life expectancy is generally greater for women than for men, but what is called life expectancy without disability is very close for the two sexes—up to 65 to 70 years. Beyond that age, women are generally at a disadvantage. Moreover, women’s maximum physical capacity is on average 30% less than men’s, and this difference tends to persist with advancing age, but the variability in the two groups is wide, with some overlap between the two distributions.

At the level of the working career there are great differences. On average, women have received less training for work than men when they start their working life, they most often occupy posts for which fewer qualifications are needed, and their working careers are less rewarding. With age they, therefore, occupy posts with considerable constraints, such as time constraints and repetitiveness of the work. No sexual difference in the development of cognitive capacity with age can be established without reference to this social context of work.

If the design of work situations is to take account of these gender differences, action must be taken especially in favour of the initial and continuing vocational training of women and constructing work careers that increase women’s experiences and enhance their value. This action must, therefore, be taken well before the end of their active lives.

Ageing of working populations: the usefulness of collective data

There are at least two reasons for adopting collective and quantitative approaches with respect to the ageing of the working population. The first reason is that such data will be necessary in order to evaluate and foresee the effects of ageing in a workshop, a service, a firm, a sector or a country. The second reason is that the main components of ageing are themselves phenomena subject to probability: all workers do not age in the same way or at the same rate. It is therefore by means of statistical tools that various aspects of ageing will sometimes be revealed, confirmed or assessed.

The simplest instrument in this field is the description of age structures and of their evolution, expressed in ways relevant to work: economic sector, trade, group of jobs, and so on.

For example, when we observe that the age structure of a population in a workplace remains stable and young, we may ask which characteristics of the work could play a selective role in terms of age. If, on the contrary, this structure is stable and older, the workplace has the function of receiving people from other sectors of the firm; the reasons for these movements are worth studying, and we should equally verify whether the work in this workplace is suited to the characteristics of an ageing workforce. If, finally, the age structure shifts regularly, simply reflecting recruitment levels from one year to another, we probably have a situation where people “grow old on site”; this sometimes requires special study, particularly if the annual number of recruitments is tending to decline, which will shift the overall structure towards higher age groups.

Our understanding of these phenomena can be enhanced if we have quantitative data on working conditions, on the posts currently occupied by the workers and (if possible) on the posts that they no longer occupy. The work schedules, the repetitiveness of work, the nature of the physical demands, the work environment, and even certain cognitive components, can be the subject of queries (to be asked of the workers) or of evaluations (by experts). It is then possible to establish a connection between the characteristics of the present work and of past work, and the age of the workers concerned, and so to elucidate the selection mechanisms to which the work conditions can give rise at certain ages.

These investigations can be further improved by also obtaining information on the health status of the workers. This information can be derived from objective indicators such as the work accident rate or sickness absence rate. But these indicators often require considerable care as regards methodology, because although they do indeed reflect health conditions that may be work-related, they also reflect the strategy of all those concerned with occupational accidents and absence due to illness: the workers themselves, the management and the physicians can have various strategies in this regard, and there is no guarantee that these strategies are independent of the worker’s age. Comparisons of these indicators between ages are therefore often complex.

Recourse will therefore be had, when possible, to data arising from self-evaluation of health by the workers, or obtained during medical examinations. These data may relate to diseases whose variable prevalence with age needs to be better known for purposes of anticipation and prevention. But the study of ageing will rely above all on the appreciation of conditions that have not reached the disease stage, such as certain types of functional deterioration: (e. g., of the joints—pain and limitation of sight and hearing, of the respiratory system) or else certain kinds of difficulty or even incapacity (e. g. in mounting a high step, making a precise movement, maintaining equilibrium in an awkward position).

Relating data concerning age, work and health is therefore at the same time a useful and complex matter. Their use permits various types of connections to be revealed (or their existence to be presumed). It may be a case of simple causal relationships, with some requirement of the work accelerating a type of decline in the functional state as age advances. But this is not the most frequent case. Very often, we shall be led to appreciate simultaneously the effect of an accumulation of constraints on the a set of health characteristics, and at the same time the effect of selection mechanisms in accordance with which workers whose health has declined may find that they are excluded from certain kinds of work (what the epidemiologists call the “healthy worker effect”).

In this way we can evaluate the soundness of this collection of relationships, confirm certain fundamental knowledge in the sphere of psychophysiology, and above all obtain information that is useful for devising preventive strategies as regards ageing at work.

Some types of action

Action to be undertaken to maintain ageing workers in employment, without negative consequences for them, must follow several general lines:

1.     One must not consider this age group as a category apart, but must instead consider age as one factor of diversity among others in the active population; protective measures that are too targeted or too accentuated tend to marginalize and weaken the position of the populations concerned.

2.     One should anticipate individual and collective changes related to age, as well as changes in work techniques and organization. The management of human resources can be effectively carried out only over time, so as to prepare appropriate adjustments in work careers and training. The design of work situations can then take account at the same time of the available technical and organizational solutions and the characteristics of the (future) population concerned.

3.     The diversity of individual development throughout working life should be taken into consideration, so as to create conditions of equivalent diversity in work careers and situations.

4.     Attention should be devoted to favouring the process of building up skills and attenuating the process of decline.

On the basis of these few principles, several types of immediate action can first be defined. The highest priority of action will concern working conditions that are capable of posing particularly acute problems for older workers. As mentioned earlier, postural stresses, extreme exertion, strict time constraints (e.g., as with assembly-line work or the imposition of higher output goals), harmful environments (temperature, noise) or unsuitable environments (lighting conditions), night work and shift work are examples.

Systematic pinpointing of these constraints in posts that are (or may be) occupied by older workers allows an inventory to be drawn up and priorities to be established for action. This pinpointing can be carried out by means of empirical inspection checklists. Of equal use will be analysis of worker activity, which will permit observation of their behaviour to be linked with the explanations that they give of their difficulties. In these two cases, measures of effort or of environmental parameters may complete the observations.

Beyond this pinpointing, the action to be taken cannot be described here, since it will obviously be specific to each work situation. The use of standards may sometimes be useful, but few standards take account of specific aspects of ageing, and each one is concerned with a particular domain, which tends to give rise to thinking in an isolated fashion about each component of the activity under study.

Apart from the immediate measures, taking ageing into account implies longer-range thinking directed towards working out the widest possible flexibility in the design of work situations.

Such flexibility must first be sought in the design of work situations and equipment. Restricted space, nonadjustable tools, rigid software, in short, all the characteristics of the situation that limit the expression of human diversity in the carrying out of the task are very likely to penalize a considerable proportion of older workers. The same is true of the more constraining types of organization: a completely predetermined distribution of tasks, frequent and urgent deadlines, or too numerous or too strict orders (these, of course, must be tolerated when there are essential requirements relating to the quality of production or the safety of an installation). The search for such flexibility is, therefore, the search for varied individual and collective adjustments that can facilitate the successful integration of ageing workers into the production system. One of the conditions for the success of these adjustments is obviously the establishment of work training programmes, provided for workers of all ages and geared to their specific needs.

Taking ageing into account in the design of work situations thus entails a series of coordinated actions (overall reduction in extreme stresses, using all possible strategies for work organization, and continuous efforts to increase skills), which are all the more efficient and all the less expensive when they are taken over the long term and are carefully thought out in advance. The ageing of the population is a sufficiently slow and foreseeable phenomenon for appropriate preventive action to be perfectly feasible.


Joke H. Grady-van den Nieuwboer

Designing for Disabled Persons is Designing for Everyone

There are so many products on the market that readily reveal their unfitness for the general population of users. What evaluation should one make of a doorway too narrow to comfortably accommodate a stout person or pregnant woman? Shall its physical design be faulted if it satisfies all relevant tests of mechanical function? Certainly such users cannot be regarded as disabled in any physical sense, since they may be in a state of perfect health. Some products need considerable handling before one can force them to perform as desired—certain inexpensive can openers come, not altogether trivially, to mind. Yet a healthy person who may experience difficulty operating such devices need not be considered disabled. A designer who successfully incorporates considerations of human interaction with the product enhances the functional utility of his or her design. In the absence of good functional design, people with a minor disability may find themselves in the position of being severely hampered. It is thus the user-machine interface that determines the value of design for all users.

It is a truism to remind oneself that technology exists to serve human beings; its use is to enlarge their own capabilities. For disabled persons, this enlargement has to be taken some steps further. For instance in the 1980s, a good deal of attention was paid to the design of kitchens for disabled people. The experience gained in this work penetrated design features for “normal” kitchens; the disabled person in this sense may be considered a pioneer. Occupationally-induced impairments and disabilities—one has but to consider the musculoskeletal and other complaints suffered by those confined to sedentary tasks so common in the new workplace—similarly call for design efforts aimed not only also preventing the recurrence of such conditions, but at the development of user-compatible technology adapted to the needs of workers already affected by work-related disorders.

The Broader Average Person

The designer should not focus on a small, unrepresentative population. Among certain groups it is most unwise to entertain assumptions concerning similarities among them. For example, a worker injured in a certain way as an adult may not necessarily be anthropometrically quite so different from an otherwise comparable, healthy person, and may be considered as part of the broad average. A young child so injured will display a considerably different anthropometry as an adult since his muscular and mechanical development will be steadily and sequentially influenced by preceding growth stages. (No conclusions as to comparability as adults ought to be ventured as regards the two cases. They must be regarded as two distinct, specific groups, only the one being included among the broad average.) But as one strives for a design suitable for, say, 90% of the population, one should exert fractionally greater pains to increase this margin to, say, 95%, the point being that in this way the need for design for specific groups can be reduced.

Another way to approach design for the broader average population is to produce two products, each one designed roughly to fit the two percentile extremes of human differences. Two sizes of chair, for instance, might be built, the one with brackets allowing it to be adjusted in height from 38 to 46 cm, and the other one from 46 to 54 cm; two sizes of pliers already exist, one fitting larger and average sizes of men’s hands and the other fitting average women’s hands and hands of smaller men.

It would be a well-advised company policy to reserve annually a modest amount of money to have worksites analysed and made more suitable for workers, a move that would prevent illness and disability due to excessive physical load. It also increases the motivation of workers when they understand that management is actively trying to improve their work environment, and more impressively so when elaborate measures sometimes have to be undertaken: thorough work analysis, the construction of mock-ups, anthropometrical measurements, and even the specific design of units for the workers. In a certain company, in fact, the conclusion was that the units should be redesigned at every worksite because they caused physical overload in the form of too much standing, there were unsuitable dimensions associated with the seated positions, and there were other deficiencies as well.

Costs, Benefits and Usability of Design

Cost/benefit analyses are developed by ergonomists in order to gain insight into the results of ergonomic policies other than those that are economic. In the present day, evaluation in the industrial and commercial realms includes the negative or positive impact of a policy on the worker.

Methods of evaluating quality and usability are currently the subject of active research. The Rehabilitation Technology Useability Model (RTUM), as shown in figure 29.51 , can be utilized as a model for evaluating the usability of a product within rehabilitation technology and to illuminate the various aspects of the product which determine its usability.

Figure 29.51 The Rehabilitation Technology Useability Model (RTUM)

From the strictly economic point of view, the costs of creating a system in which a given task can be performed or in which a certain product can be made can be specified; it scarcely needs mentioning that in these terms each company is interested in a maximum return on its investment. But how can the real costs of task performance and product manufacturing in relation to financial investment be determined when one takes into account the varying exertions of workers’ physical, cognitive and mental systems? In fact, the judging of human performance itself is, among other factors, based on the workers’ perception of what has to be done, their view of their own value in doing it, and their opinion of the company. It is actually the intrinsic satisfaction with work that is the norm of value in this context, and this satisfaction, together with the aims of the company, constitute one’s reason for performing. Worker well-being and performance are thus based on a wide spectrum of experiences, associations and perceptions that determine attitudes towards work and the ultimate quality of performance—an understanding upon which the RTUM model is predicated.

If one does not accept this view, it becomes necessary to regard investment only in relation to doubtful and unspecified results. If ergonomists and physicians wish to improve the work environment of disabled people—to produce more from machine operations and enhance the usability of the tools used—they will encounter difficulties in finding ways to justify the financial investment. Typically, such justification has been sought in savings realized by prevention of injury and illness due to work. But if the costs of illness have been borne not by the company but by the state, they become financially invisible, so to speak, and are not seen as work-related.

Nevertheless, the awareness that investment in a healthy working environment is money well spent has been growing with the recognition that the “social” costs of incapacities are translatable in terms of ultimate costs to a country’s economy, and that value is lost when a potential worker is sitting about at home making no contribution to society. Investing in a workplace (in terms of adapting a work station or providing special tools or perhaps even help in personal hygiene) can not only reward a person with job satisfaction but can help make him or her self-sufficient and independent of social assistance.

Cost/benefit analyses can be carried out in order to determine whether special intervention in the workplace is justified for disabled persons. The following factors represent sources of data that would form the object of such analyses:

1. Personnel

·     Absence. Will the disabled worker have a satisfactory attendance record?

·     Is it likely that extra costs may be incurred for special task instruction?

·     Are personnel changes called for? Their costs must be considered also.

·     Can accident compensation rates be expected to increase?

2. Safety

·     Will the job being considered for the disabled worker involve safety regulations?

·     Will special safety regulations be involved?

·     Is the work characterized by a considerable frequency of accidents or near accidents?

3. Medical

·     As regards the worker whose disability is being examined with a view to his or her re-entry into the workplace, the nature and seriousness of the incapacity must be assessed.

·     The extent of the disabled worker’s absence must also be taken into account.

·     What is the character and frequency of the worker’s “minor” symptoms, and how are they to be dealt with? Can the future development of related “minor” illnesses capable of hampering the worker’s efficiency be foreseen?

As concerns time lost from work, these calculations can be made in terms of wages, overhead, compensation and lost production. The sort of analyses just described represents a rational approach by which an organization can arrive at an informed decision as to whether a disabled worker is better off back on the job and whether the organization itself will gain by his or her return to work.

In the preceding discussion, designing for the broader population has received a focus of attention heightened by emphasis on specific design in relation to usability and the costs and benefits of such design. It is still a difficult task to make the needed calculations, including all relevant factors, but at present, research efforts are continuing that incorporate modelling methods in their techniques. In some countries, for example the Netherlands and Germany, government policy is making companies more responsible for job-related personal harm; fundamental changes in regulatory policies and insurance structures are, clearly, to be expected to result from trends of this sort. It has already become a more or less settled policy in these countries that a worker who suffers a disabling accident at work should be provided with an adapted work station or be able to perform other work within the company, a policy that has made the treatment of the disabled a genuine achievement in the humane treatment of the worker.

Workers with Limited Functional Capacity

Whether design is aimed at the disabled or at the broader average, it is hindered by a scarcity of research data. Handicapped people have been the subjects of virtually no research efforts. Therefore, in order to set up a product requirements document, or PRD, a specific empirical research study will have to be undertaken in order to gather that data by observation and measurement.

In gathering the information needed about the disabled worker or user it is necessary to consider not only the current functional status of the disabled person, but to make the attempt to foresee whatever changes might be the result of the progression of a chronic condition. This kind of information can, in fact, be elicited from the worker directly, or a medical specialist can supply it.

In designing, for instance, a work action to which data about the worker’s physical strength is relevant, the designer will not choose as a specification the maximum strength which the disabled person can exert, but will take into account any possible diminution in strength that a progression in the worker’s condition might bring about. Thus the worker will be enabled to continue to use the machines and tools adapted or designed for him or at the work station.

Furthermore, designers should avoid designs that involve manipulations of the human body at the far extremes of, say, the range of motion of a body part, but should accommodate their designs to the middle ranges. A simple but very common illustration of this principle follows. A very common part of the drawers of kitchen and office cabinets and desks is a handle that has the form of a little shelf under which one places the fingers, exerting upward and forward force to open the drawer. This manoeuvre requires 180 degrees of supination (with the palm of the hand up) in the wrist—the maximum point for the range of this sort of motion of the wrist. This state of affairs may present no difficulty for a healthy person, provided that the drawer can be opened with a light force and is not awkwardly situated, but makes for strain when the action of the drawer is tight or when the full 180-degree supination is not possible, and is a needless burden on a disabled person. A simple solution—a vertically placed handle—would be mechanically far more efficient and more easily manipulated by a larger portion of the population.

Physical Functioning Ability

In what follows, the three chief areas of limitation in physical functional ability, as defined by the locomotion system, the neurological system and the energy system, will be discussed. Designers will gain some insight into the nature of user/worker constraints in considering the following basic principles of bodily functions.

The locomotion system. This consists of the bones, joints, connective tissues and muscles. The nature of the joint structure determines the range of motion possible. A knee joint, for example, shows a different degree of movement and stability than the joint of the hip or the shoulder. These varying joint characteristics determine the actions possible to the arms, hands, feet, and so on. There are also different types of muscle; it is the type of muscle, whether the muscle passes over one or two joints, and the location of the muscle that determines, for a given body part, the direction of its movement, its speed, and the strength which it is capable of exerting.

The fact that this direction, speed and strength can be characterized and calculated is of great importance in design. For disabled people, one has to take it into account that the “normal” locations of muscles have been disturbed and that the range of motion in joints has been changed. In an amputation, for instance, a muscle may function only partly, or its location may have changed, so that one has to examine the physical ability of the patient carefully to establish what functions remain and how reliable they may be. A case history follows.

A 40-year-old carpenter lost his thumb and the third finger of his right hand in an accident. In an effort to restore the carpenter’s capacity for work, a surgeon removed one of the patient’s great toes and he replaced the missing thumb with it. After a period of rehabilitation, the carpenter returned to work but found it impossible to do sustained work for more than three to four hours. His tools were studied and found to be unfitted to the “abnormal” structure of his hand. The rehabilitation specialist, examining the “redesigned” hand from the point of view of its new functional ability and form was able to have new tools designed that were more appropriate and usable with respect to the altered hand. The load on the worker’s hand, previously too heavy, was now within a usable range, and he regained his ability to continue work for a longer time.

The neurological system. The neurological system can be compared to a very sophisticated control room, complete with data collectors, whose purpose it is to initiate and govern one’s movements and actions by interpreting information relating to those aspects of the body’s components relating to position and mechanical, chemical and other states. This system incorporates not only a feedback system (e.g., pain) that provides for corrective measures, but a “feed-forward” capability which expresses itself anticipatorily so as to maintain a state of equilibrium. Consider the case of a worker who reflexively acts so as to restore a posture in order to protect himself from a fall or from contact with dangerous machine parts.

In disabled persons, the physiological processing of information can be impaired. Both the feedback and the feed-forward mechanisms of visually impaired people are weakened or absent, and the same is true, on an acoustic level, among the hearing-impaired. Furthermore the important governing circuits are interactive. Sound signals have an effect on the equilibrium of a person in conjunction with proprioceptive circuits that situate our bodies in space, so to speak, via data gathered from muscles and joints, with the further help of visual signals. The brain can function to overcome quite drastic deficiencies in these systems, correcting for errors in the coding of information and “filling in” missing information. Beyond certain limits, to be sure, incapacity supervenes. Two case histories follow.

Case 1. A 36-year-old woman suffered a lesion of the spinal cord due to an automobile accident. She is able to sit up without assistance and can move a wheelchair manually. Her trunk is stable. The feeling in her legs is gone, however; this defect includes an inability to sense temperature changes.

She has a sitting workplace at home (the kitchen is designed to allow her to work in a seated position). The safety measure has been taken of installing a sink in a position sufficiently isolated that the risk of burning her legs with hot water is minimized, since her inability to process temperature information in the legs leaves her vulnerable to being unaware of being burned.

Case 2. A five-year-old boy whose left side was paralysed was being bathed by his mother. The doorbell rang, the mother left the boy alone to go to the front door, and the boy, turning on the hot-water tap, suffered burns. For safety reasons, the bath should have been equipped with a thermostat (preferably one that the boy could not have overridden).

The energy system. When the human body has to perform physical labour, physiological changes, notably in the form of interactions in the muscle cells, take place, albeit relatively inefficiently. The human “motor” converts only about 25% of its energy supply to mechanical activity, the remainder of the energy representing thermal losses. The human body is therefore not especially suited to heavy physical labour. Exhaustion sets in after a certain time, and if heavy labour has to be performed, reserve energy sources are drawn upon. These sources of reserve energy are always used whenever work is carried out very rapidly, is started suddenly (without a warm-up period) or involves heavy exertion.

The human organism obtains energy aerobically (via oxygen in the bloodstream) and anaerobically (after depleting aerobic oxygen, it calls upon small, but important reserve units of energy stored in muscle tissue). The need for fresh air supplies in the workplace naturally draws the focus of discussion of oxygen usage toward the aerobic side, working conditions that are strenuous enough to call forth anaerobic processes on a regular basis being extraordinarily uncommon in most workplaces, at least in the developed countries. The availability of atmospheric oxygen, which relates so directly to human aerobic functioning, is a function of several conditions:

·     Ambient air pressure (approximately 760 torr, or 21.33 kPa at sea level). High-altitude task performance can be profoundly affected by oxygen deficiency and is a prime consideration for workers in such conditions.

·     For workers doing heavy labour, ventilation is necessary to ensure refreshment of the air supply, allowing the volume of air respired per minute to be increased.

·     Ambient oxygen makes its way into the bloodstream via the alveoli by diffusion. At higher blood pressures, the diffusion surface is enlarged and thereby the oxygen capacity of the blood.

·     An increase in oxygen diffusion to the tissues causes an increase of the diffusion surface and consequently of the oxygen level.

·     People with certain heart problems suffer when, with increased cardiac output (together with the oxygen level), the blood circulation changes in favour of the muscles.

·     By contrast with oxygen, because of the large reserves of glucose, and especially fat, the energy source (“fuel”) need not be continuously delivered from the outside. In heavy labour, it is merely glucose, with its high energy value, that is used. With lighter work, fat is called upon, at a rate varying with the individual. A brief, general case history follows.

A person suffering from asthma or bronchitis, both of which are diseases affecting the lungs, causes the worker severe limitation in his or her work. The work assignment of this worker should be analysed with respect to factors such as physical load. The environment should be analysed as well: clean ambient air will contribute substantially to workers’ well-being. Furthermore, the workload should be balanced through the day, avoiding peak loads.

Specific Design

In some cases, however, there is still a need for specific design, or design for very small groups. Such a need arises when the tasks to be performed and the difficulties a disabled person is experiencing are excessively large. If the needed specific requirements cannot be made with the available products on the market (even with adaptations), specific design is the answer. Whether this sort of solution may be costly or cheap (and aside from humanitarian issues) it must be nonetheless regarded in the light of workability and support to the firm’s viability. A specially designed worksite is worthwhile economically only when the disabled worker can look forward to working there for years and when the work he or she does is, in production terms, an asset to the company. When this is not the case, although the worker may indeed insist upon his or her right to the job, a sense of realism should prevail. Such touchy problems should be approached in a spirit of seeking a solution by cooperative endeavours at communication.

The advantages of specific design are as follows:

·     The design is custom made: it fits the problems to be solved to perfection.

·     The worker so served can return to work and a life of social participation.

·     The worker can be self-sufficient, independent of welfare.

·     The costs of any personnel changes that the alternative might involve are avoided.

The disadvantages of specific design are:

·     The design is unlikely to be used for even one other person, let alone a larger group.

·     Specific design is often costly.

·     Specifically designed products must often be handmade; savings owing to mass methods are most often not realizable.

Case 1. For example, there is the case of a receptionist in a wheelchair who had a speech problem. Her speech difficulty made for rather slow conversations. While the firm remained small, no problems arose and she continued to work there for years. But when the firm enlarged, her disabilities began to make themselves problematic. She had to speak more rapidly and to move about considerably faster; she could not cope with the new demands. However, solutions to her troubles were sought and reduced themselves to two alternatives: special technical equipment might be installed so that the deficiencies that degraded the quality of some of her tasks could be compensated for, or she could simply choose a set of tasks involving a more desk-bound workload. She chose the latter course and still works for the same company.

Case 2. A young man, whose profession was the production of technical drawings, suffered a high level spinal cord lesion due to diving in shallow waters. His injury is severe enough for him to require help with all his daily activities. Nevertheless, with the help of a computer-aided design (CAD) software, he continues to be able make his living at technical drawing and lives, financially independent, with his partner. His work space is a study adapted for his needs and he works for a firm with which he communicates by computer, phone and fax. To operate his personal computer, he had to have certain adaptations made to the keyboard. But with these technical assets he can earn a living and provide for himself.

The approach for specific design is not different from other design as described above. The only insurmountable problem that may arise during a design project is that the design objective cannot be achieved on purely technical grounds—in other words, it can’t be done. For example, a person suffering from Parkinson’s disease is prone, at a certain stage in the progression of his or her condition, to fall over backwards. An aid which would prevent such an eventuality would of course represent the desired solution, but the state of the art is not such that such a device can yet be built.

System Ergonomic Design and Workers with Special Physical Needs

One can treat bodily impairment by medically intervening to restore the damaged function, but the treatment of a disability, or deficiency in the ability to perform tasks, can involve measures far less developed in comparison with medical expertise. As far as the necessity of treating a disability is concerned, the severity of the handicap strongly influences such a decision. But given that treatment is called for, however, the following means, taken singly or in combination, form the choices available to the designer or manager:

·     leaving out a task

·     compensating for a worker’s deficiency in performing a task element by using a machine or another person’s help

·     differentiation of the task order, that is, dividing the task into more manageable subtasks

·     modification of the tools used in the task

·     special design of tools and machines.

From the specific ergonomic point of view, treatment of a disability includes the following:

·     modification of the task

·     modification of a tool

·     design of new tools or new machines.

The issue of efficacy is always the point of departure in the modification of tools or machines, and is often related to the costs devoted to the modification in question, the technical features to be addressed, and the functional changes to be embodied in the new design. Comfort and attractiveness are qualities that by no means deserve to be neglected among these other characteristics.

The next consideration relating to design changes to be made to a tool or machine is whether the device is one already designed for general use (in which case, modifications will be made to a pre-existing product) or is to be designed with an individual type of disability in mind. In the latter case, specific ergonomic considerations must be devoted to each aspect of the worker’s disability. For example, given a worker suffering from limitations in brain function after a stroke, impairments such as aphasia (difficulty in communication), a paralysed right arm, and a spastic paresis of the leg preventing its being moved upwards might require the following adjustments:

·     a personal computer or other device enabling the worker to communicate

·     tools that can be operated with the remaining useful arm

·     a prosthetic system that would serve to restore the function of the impaired foot as well as to compensate for the patient’s loss of ability to walk.

Is there any general answer to the question of how to design for the disabled worker? The system ergonomic design (SED) approach is an eminently suitable one for this task. Research related to the work situation or to the kind of product at issue requires a design team for the purpose of gathering special information relating either to a special group of disabled workers or to the unique case of an individual user disabled in a particular way. The design team will, by virtue of including a diversity of qualified people, be in possession of expertise beyond the technical sort expected of a designer alone; the medical and ergonomic knowledge shared among them will be as fully applicable as the strictly technical.

Design constraints determined by assembling data related to disabled users are treated with the same objectivity and in the same analytical spirit as are counterpart data relating to healthy users. Just as for the latter, one has to determine for disabled persons their personal patterns of behavioural response, their anthropometrical profiles, biomechanical data (as to reach, strength, range of motion, handling space used, physical load and so forth), ergonomic standards and safety regulations. But one is most regretfully obliged to concede that very little research indeed is done on behalf of disabled workers. There exist a few studies on anthropometry, somewhat more on biomechanics in the field of prostheses and orthoses, but hardly any studies have been carried on physical load capabilities. (The reader will find references to such material in the “Other relevant reading” list at the end of this chapter.) And while it is sometimes easy to gather and apply such data, frequently enough the task is difficult, and in fact, impossible. To be sure, one must obtain objective data, however strenuous the effort and unlikely the chances of doing so, given that the numbers of disabled persons available for research is small. But they are quite often more than willing to participate in whatever research they are offered the opportunity of sharing in, since there is great consciousness of the importance of such a contribution towards design and research in this field. It thus represents an investment not only for themselves but for the larger community of disabled people.


Issachar Gilad*

*The author acknowledges the assistance of Mr. E. Messer and Prof. W. Laurig for their contribution to the biomechanical and design aspects, and to Prof. H. Stein and Dr. R. Langer for their help with the physiological aspects of the polishing process. The research was supported by a grant from the Committee for Research and Prevention in Occupational Safety and Health, Ministry of Labor and Social Affairs, Israel.

The design of manually operated work benches and working methods in the diamond polishing industry has not changed for hundreds of years. Occupational health studies of diamond polishers have identified high rates of musculoskeletal disorders of the hands and arms, specifically, ulnar neuropathy at the elbow. These are due to the high musculoskeletal demands placed on the upper body in the practice of this manually intensive profession. A study conducted at the Technion Israel Institute of Technology addressed itself to the investigation of the ergonomic aspects and occupational diseases relating to safety issues among craftsmen in the diamond polishing industry. The tasks in this industry, with its high demands for manipulative movements, include movements that require frequent, rapid hand exertions. An epidemiological review conducted during the years 1989-1992 in the Israeli diamond industry has pointed out that the manipulative movements experienced in diamond polishing very often cause serious health problems to the worker in the upper extremities and in the upper and lower back. When such occupational hazards affect workers, it produces a chain reaction that eventually affects the industry’s economy as well.

For thousands of years, diamonds have been objects of fascination, beauty, richness and capital value. Skillful craftsmen and artists have tried, through the ages, to create beauty by enhancing the shape and values of this unique form of hard carbon crystal formation. In contrast to the continuing achievements of artistic creation with the native stone and the emergence of a great international industry, very little has been done to improve some questionable working conditions. A survey of the diamond museums in England, South Africa and Israel allows one to draw the historical conclusion that the traditional polishing workplace has not changed for hundreds of years. The typical diamond polishing tools, working bench and work processes are described by Vleeschdrager (1986), and they have been found to be universally common to all polishing setups.

Ergonomic evaluation performed at diamond manufacturing setups points to a great lack of engineering design of the polishing workstation, which causes back pain and neck and arm stress due to working posture. A micromotion study and biomechanical analysis of motion patterns involved in the diamond polishing profession indicate extremely intense hand and arm movements that involve high acceleration, rapid movement and a great degree of repetitiveness in short-period cycles. A symptom survey of diamond polishers indicated that 45% of the polishers were younger than 40 years of age, and although they represent a young and healthy population, 64% reported pain in the shoulders, 36% pain in the upper arm and 27% pain in the lower arm. The act of polishing is performed under an extensive amount of “hand on tool” pressure which is applied to a vibrating polishing disk.

The first known description of a diamond polishing workstation was given in 1568 by the Italian goldsmith, Benvenuto Cellini, who wrote: “One diamond is rubbed against another until by mutual abrasion both take a form which the skilled polisher wishes to achieve.” Cellini’s description could have been written today: the role of the human operator has not changed over these 400 years. If one examines the working routines, hand tools and the nature of the decisions involved in the process one can see that the user-machine relationship has also hardly changed. This situation is unique among most industries where enormous changes have occurred with the entry of automation, robotics and computer systems; these have completely changed the role of the worker in the world today. Yet the polishing work cycle has been found to be very similar, not only in Europe where the polishing craft started, but in most industries all over the globe, whether in advanced facilities in the United States, Belgium or Israel—which specialize in fancy geometry and higher-value diamond products—or the facilities in India, China and Thailand, which generally produce popular shapes and mid-value products.

The polishing process is based on grinding the fixed rough diamond over diamond dust bonded to the polishing disk’s surface. Owing to its hardness, only grinding by friction against similar carbon material is effective in manipulating the diamond’s shape to its geometric and brilliant finish. The workstation hardware is composed of two basic groups of elements: workstation mechanisms and hand-held tools. The first group includes an electric motor, which rotates a polishing disk on a vertical cylindrical shaft, perhaps by a single direct drive; a solid flat table which surrounds the polishing disk; a bench seat and a source of light. The hand-held operating tools consist of a diamond holder (or tang) which houses the rough stone during all polishing phases and is usually held in the left palm. The work is magnified with a convex lens which is held between the first, second and third fingers of the right hand and viewed with the left eye. This method of operation is imposed by a strict training process which in most cases does not take handedness into account. During work the polisher assumes a reclining posture, pressing the holder to the grinding disk. This posture requires the support of the arms on the working table in order to stabilize the hands. As a result, the ulnar nerve is vulnerable to external lesions due to its anatomical position. Such an injury is common among diamond polishers and has been accepted as an occupational disease since the 1950s. The number of polishers worldwide today is around 450,000, of whom approximately 75% are located in the Far East, primarily India, which has dramatically expanded its diamond industry in the last two decades. The act of polishing is done manually, with each of the diamond facets being produced by polishers who are trained and skilled with respect to a certain part of the stone’s geometry. The polishers are a clear majority of the diamond craft force, composing about 80% of the overall industry’s workforce. Therefore, most of the occupational risks of this industry can be addressed through improving the operation of the diamond polishing workstation.

Analysis of the motion patterns involved in polishing shows that the polishing routine consists of two subroutines: a simpler routine called the polish cycle, which represents the basic diamond polishing operation, and a more important one called the facet cycle, which involves a final inspection and a change of the stone’s position in the holder. The overall procedure includes four basic work elements:

1.     Polishing. This is simply the actual polishing operation.

2.     Inspection. Every few seconds the operator, using a magnifying glass, visually inspects the progress made on the polished facet.

3.     Dop adjustment. An angular adjustment is made to the diamond holder’s head (dop).

4.     Stone change. The act of changing facets, which is done by turning the diamond through a predetermined angle. It takes about 25 repetitions of these four elements to polish a diamond’s facet. The number of such repetitions depends upon such aspects as operator’s age, stone hardness and characteristics, time of day (owing to operator fatigue), and so on. On average, each repetition takes about four seconds. A micromotion study as performed on the polishing process and the methodology used is given by Gilad (1993).

Two of the elements—polishing and inspection—are performed in relatively static working postures while so-called “hand to polish” (H to P) and “hand to inspect” (H to I) actions require short and fast movements of the shoulder, elbow and wrist. Most of the actual movements of both hands are performed by flexion and extension of the elbow and pronation and supination of the elbow. Body posture (back and neck) and all other movements except wrist deviation are relatively unchanged during normal work. The stone holder, which is constructed of a square cross-sectional steel rod, is held so that it presses on blood vessels and bone, which can result in a reduction of blood flow to the ring and little fingers. The right hand holds the magnifying glass all during the polishing cycle, exerting isometric pressure on the three first fingers. For most of the time the right and left hands follow parallel movement patterns, while in the “hand to grind” movement the left hand leads and the right hand starts moving after a short delay, and in the “hand to inspect” movement the order is reversed. Right-hand tasks involve either holding the magnifying glass to the inspecting left eye while supporting the left hand (elbow flexion), or by putting pressure on the diamond holder head for better grinding (elbow extension). These fast movements result in rapid accelerations and decelerations that end up in a very precise placing of the stone on the grinding disk, which requires a high level of manual dexterity. It should be noted that it takes long years to become proficient to the point where work movements are almost embedded reflexes executed automatically.

On the face of it, diamond polishing is a simple straightforward task, and in a way it is, but it requires much skill and experience. In contrast to all other industries, where raw and processed material is controlled and manufactured according to exact specifications, the diamond in the rough is not homogeneous and each diamond crystal, large or small, has to be checked, categorized and treated individually. Apart from the needed manual skill, the polisher has to make operational decisions at every polishing phase. As a result of the visual inspection, decisions must be made on such factors as angular spatial correction—a three-dimensional judgment—amount and duration of pressure to be applied, angular positioning of the stone, contact point on the grinding disk, among others. Many points of significance have to be considered, all in the average time of four seconds. it is important to understand this decision-making process when improvements are designed.

Before one can advance to the stage at which motion analysis can be used for setting better ergonomic design and engineering criteria for a polishing workstation, one has to be aware of yet further aspects involved in this unique user-machine system. In this post-automation age, we still find the production part of the successful and expanding diamond industry almost untouched by the enormous technological advances made in the last few decades. While almost all other sectors of industry have undergone continuing technology change that defined not only production methods but the products themselves, the diamond industry has remained virtually static. A plausible reason for this stability may be the fact that neither the product nor the market have changed through the ages. The design and shapes of diamonds have in practice remained almost unchanged. From the business point of view, there was no reason to change the product or the methods. Furthermore, since most of the polishing work is done by subcontracting to individual workers, the industry had no problem in regulating the labour force, adjusting the flow of work and the supply of rough diamonds according to market fluctuations. As long as the production methods do not change, the product will not change either. Once the use of more advanced technology and automation are adopted by the diamond industry, the product will change, with a greater variety of forms available in the market. But a diamond still has a mystic quality that sets it apart from other products, a value that may well decrease when it comes to be regarded as merely another mass-produced item. Recently though, market pressures and the arrival of new production centres, mainly in the Far East, are challenging the old established European centres. These are forcing the industry to examine new methods and production systems and the role of the human operator.

When considering improving the polishing workstation, one must look upon it as part of a user-machine system that is governed by three main factors: the human factor, the technology factor and the business factor. A new design that takes account of ergonomic principles will provide a springboard to a better production cell in the broad sense of the term, meaning comfort over long working hours, a better quality product and higher production rates. Two different design approaches have been considered. One involves a redesign of the existing workstation, with the worker given the same tasks to perform. The second approach is to look at the polishing task in an unbiased manner, aiming at an optimal, total station and task design. A total design should not be based on the present workstation as input but on the future polishing task, generating design solutions that integrate and optimize the needs of the three above-mentioned system factors.

At present, the human operator performs most of the tasks involved in the polishing act. These human-performed tasks rely on “filling” and working experience. This is a complex psychophysiological process, only partially conscious, based on trial and error input which enables an operator to execute complex operations with a good prediction of the outcome. During periodic daily work cycles of thousands of identical movements, “filling” manifests itself in the human-automatic operation of motor memory executed with great precision. For each of these automatic motions, tiny corrections are made in response to feedback received from the human sensors, like the eyes, and the pressure sensors. In any future diamond polishing workstation these tasks will continue to be performed in a different way. As to the material itself, in the diamond industry, by contrast with most other industries, the relative value of the raw material is very high. This fact explains the importance of making maximal use of the rough diamond’s volume (or stone weight) in order to get the largest net stone possible after polishing. This emphasis is paramount throughout all the stages of diamond processing. Productivity and efficiency are not measured by reference to time only, but also by the size and precision achieved.

The four repetitive work elements—“polish”, “hand to inspect”, “inspect” and “hand to polish”—as performed in the polishing act, can be classified under the three main task categories: motor tasks for motion elements, visual tasks as sensing elements, and control and management as decision-content elements. Gilad and Messer (1992) discuss design considerations for an ergonomic workstation. Figure 29.52  presents an outline of an advanced polishing-cell. Only the general construction is indicated, since the details of such a design are guarded as a professionally restricted “know-how”. The term polishing cell is used since this user-machine system includes a totally different approach to polishing diamonds. In addition to ergonomic improvements, the system consists of mechanical and optoelectronic devices that enable the manufacture of three to five stones at the same time. Parts of visual and control tasks have been transferred to technical operators and management of the production cell is mediated via a display unit which provides momentary information about geometry, weight and optional operation moves in order to support optimal operating acts. Such a design takes the polishing workstation a few steps ahead into modernization, incorporating an expert system and a visual control system to replace the human eye in all routine work. Operators will still be able to intervene at any point, set up data and make human judgements on machine performance. The mechanical manipulator and the expert system will form a closed-loop system capable of performing all polishing tasks. Material handling, quality control and final approval will still reside with the operator. At this stage of an advanced system, it would be appropriate to consider the employment of higher technology such as a laser polisher. At present, lasers are being used extensively to saw and cut diamonds. Using a technologically advanced system will radically change the human task description. The need for skilled polishers will diminish until they will deal only with polishing larger, top-valued diamonds, probably with supervision.

Figure 29.52 Schematic presentation of a polishing-cell


Vladimir M. Munipov

The causes of the 1986 Chernobyl disaster have been variously attributed to the operating personnel, the plant management, the design of the reactor and the lack of adequate safety information in the Soviet nuclear industry. This article considers a number of design faults, operational shortcomings and human errors that combined in the accident. It examines the sequence of events leading up to the accident, design problems in the reactor and cooling rods, and the course of the accident itself. It considers the ergonomics aspects, and expresses the view that the main cause of the accident was inadequate user-machine interaction. Finally, it stresses the continuing inadequacies, and emphasizes that unless the ergonomics lessons are fully learned, a similar disaster could still occur.

The full story of the Chernobyl disaster is yet to be disclosed. To speak candidly, the truth is still veiled by self-serving reticence, half-truths, secrecy and even falsehood. A comprehensive study of the causes of the accident appears to be a very difficult task. The main problem faced by the investigator is the need to reconstruct the accident and the role of the human factors in it on the basis of the tiny bits of information that have been made available for study. The Chernobyl disaster is more than a severe technological accident, part of the reasons for the disaster also lie with the administration and the bureaucracy. However, the chief aim of this article is to consider the design faults, the operational shortcomings and the human errors that combined in the Chernobyl accident.

Who is to blame?

The chief designer for the pressure tube large power boiling water reactors (RBMK) used at the Chernobyl nuclear power plant (NPP), in 1989, presented his view on the causes of the Chernobyl accident. He attributed the disaster to the fact that the personnel failed to observe the correct procedures, or “production discipline”. He pointed out that the lawyers investigating the accident had arrived at the same conclusion. According to his view, “the fault lies with the personnel rather than some design or manufacturing failings.” The research supervisor for the RBMK development supported this view. The possibility of ergonomic inadequacy as a causative factor was not considered.

The operators themselves expressed a different opinion. The shift supervisor of the fourth unit, A.F. Akimov, when dying in a hospital as a result of receiving a dose of radiation of more than 1,500 rads (R) in a short period of time during the accident, kept telling his parents that his actions had been correct and he could not understand what had gone wrong. His persistence reflected absolute trust in a reactor that was supposedly completely safe. Akimov also said that he had nothing to blame his crew for. The operators were sure that their actions were in accord with regulations, and the latter did not mention the eventuality of an explosion at all. (Remarkably, the possibility of the reactor’s becoming dangerous under certain conditions was introduced into the safety regulations only after the Chernobyl accident.) However, in light of design problems revealed subsequently, it is significant that the operators could not understand why inserting rods into the core caused such a terrible explosion instead of instantly stopping the nuclear reaction as designed. In other words, in this case they acted correctly according to the maintenance instructions and to their mental model of the reactor system, but the design of the system failed to correspond to that model.

Six persons, representing only the plant management, were convicted, in view of the human losses, on the grounds of having violated safety regulations for potentially explosive facilities. The chairman presiding over the court said some words to the effect of proceeding with the investigations as regards “those who failed to take measures to improve the plant design”. He also mentioned the responsibility of department officials, local authorities and medical services. But, in fact, it was clear that the case was closed. Nobody else was held responsible for the greatest disaster in the history of nuclear technology.

However, it is necessary to investigate all causative factors that combined in the disaster to learn important lessons for safe future operation of NPPs.

Secrecy: The information monopoly in research and industry

The failure of the user-machine relationship that resulted in “Chernobyl-86” can be attributed in some measure to the policy of secrecy—the enforcement of an information monopoly—that governed technological communication in the Soviet nuclear energy establishment. A small group of scientists and researchers were given an exhaustive right to define the basic principles and procedures in nuclear power, a monopoly reliably protected by the policy of secrecy. As a result, reassurances by Soviet scientists as regards the absolute safety of NPPs remained unchallenged for 35 years, and secrecy veiled the incompetence of the civil nuclear leaders. Incidentally, it became known recently that this secrecy was extended to information relating to the Three Mile Island accident as well; the operating personnel of Soviet NPPs were not fully informed about this accident—only selected items of information, which did not contradict the official view on NPP safety, were made known. A report on the human engineering aspects of the Three Mile Island accident, presented by the author of this paper in 1985, was not distributed to those involved with safety and reliability of NPPs.

No Soviet nuclear accidents were ever made public except for the accidents at the Armenian and Chernobyl (1982) nuclear power plants, which were casually mentioned in the newspaper Pravda. By concealing the true state of affairs (thus failing to make use of lessons based on the accident analyses) the leaders of the nuclear power industry were setting it straight on the path to Chernobyl-86, a path that was further smoothed by the fact that a simplified idea of the operator activities had been implanted and the risk of operating NPPs was underestimated.

As a member of the State Expert Committee on the Consequences of the Chernobyl accident stated in 1990: “To err no more, we have to admit all our errors and analyse them. It is essential to determine which errors were due to our inexperience and which ones were actually a deliberate attempt to hide the truth.”

The Chernobyl Accident of 1986

Faulty planning of the test

On 25 April 1986, the fourth unit of the Chernobyl NPP (Chernobyl 4) was being prepared for routine maintenance. The plan was to shut the unit down and perform an experiment involving inoperative safety systems totally deprived of power from normal sources. This test should have been carried out before the initial Chernobyl 4 startup. However, the State Committee was in such a hurry to start up the unit that they decided to postpone indefinitely some “insignificant” tests. The Acceptance Certificate was signed at the end of 1982. Hence, the deputy chief engineer was acting according to the earlier plan, which presupposed a wholly inactive unit; his planning and timing of the test proceeded according to this implicit assumption. This test was in no way carried out on his own initiative.

The programme of the test was approved by the chief engineer. The power during the test was supposed to be generated from the rundown energy of the turbine rotor (during its inertia-induced rotation). When still rotating, the rotor provides electric power generation which could be used in an emergency. Total loss of power at a nuclear plant causes all mechanisms to stop, including the pumps which provide for the coolant circulation in the core, which in turn results in core meltdown—a grave accident. The above experiment was aimed at testing the possibility of using some other available means—the inertial rotation of the turbine—to produce power. It is not forbidden to perform such tests at operating plants provided that an adequate procedure has been developed and additional safety precautions have been worked out. The programme must ensure that a back-up power supply for the whole test period is provided. In other words, the loss of power is only implied but never actualized. The test may be performed only after the reactor is shut down, that is, when the “scram” button is pushed and the absorbing rods are inserted in the core. Prior to this, the reactor must be in a stable controlled condition with the reactivity margin specified in the operating procedure, with at least 28 to 30 absorbing rods inserted in the core.

The programme approved by the chief engineer of the Chernobyl plant satisfied none of the above requirements. Moreover, it called for the shutting off of the emergency core cooling system (ECCS), thus jeopardizing the safety of the plant for the whole test period (about four hours). When developing the programme, the initiators took into account the possibility of triggering the ECCS, an eventuality which would have prevented them from completing the rundown test. The bleed-off method was not specified in the programme since the turbine no longer needed steam. Clearly, the people involved were completely ignorant of reactor physics. The nuclear power leaders obviously included similarly unqualified people as well, which would account for the fact that when the above programme was submitted for approval to the responsible authorities in January 1986, it was never commented on by them in any way. The dulled feeling of danger also made its contribution. Owing to the policy of secrecy surrounding nuclear technology the opinion had formed that nuclear power plants were safe and reliable, and that their operation was accident-free. Lack of official response to the programme did not, however, alert the director of the Chernobyl plant to the possibility of danger. He decided to proceed with the test using the uncertified programme, even though it was not permitted.

Change in the test programme

While performing the test, the personnel violated the programme itself, thus creating further possibilities for an accident. The Chernobyl personnel committed six gross errors and violations. According to the programme the ECCS was made inoperative, this being one of the gravest and most fatal errors. The feedwater control valves had been cut off and locked beforehand so that it would be impossible even to open them manually. The emergency cooling was deliberately put out of action in order to prevent possible thermal shock resulting from cold water entering the hot core. This decision was based on the firm belief that the reactor would hold out. The “faith” in the reactor was strengthened by the comparatively trouble-free ten years’ operation of the plant. Even a serious warning, the partial core meltdown at the first Chernobyl unit in September 1982, was ignored.

According to the test programme the rotor rundown was to be carried out at a power level of 700 to 1000 MWth (megawatts of thermal power). Such a rundown should have been performed as the reactor was being shut down, but the other, disastrous, way was chosen: to proceed with the test with the reactor still operating. This was done to ensure the “purity” of the experiment.

In certain operating conditions, it becomes necessary to change or turn off a local control for clusters of absorbing rods. When turning off one of these local systems (the means of doing this are specified in the procedure for low-power operation), the senior reactor control engineer was slow to correct the imbalance in the control system. As a result, the power fell below 30 MWth which led to fission-product reactor poisoning (with xenon and iodine). In such an event, it is next to impossible to restore normal conditions without interrupting the test and waiting a day until the poisoning is overcome. The deputy chief engineer for operations did not want to interrupt the test and, by means of shouting at them, forced the control-room operators to begin raising the power level (which had been stabilized at 200 MWth). The reactor poisoning continued, but further power increase was impermissible owing to the small operating reactivity margin of only 30 rods for a large power pressure-tube reactor (RBMK). The reactor became practically uncontrollable and potentially explosive because, in trying to overcome the poisoning, the operators withdrew several rods needed to maintain the reactivity safety margin, thus making the scram system ineffective. Nevertheless, it was decided to proceed with the test. Operator behaviour was evidently motivated mainly by the desire to complete the test as soon as possible.

Problems due to the inadequate design of the reactor and absorbing rods

To give a better understanding of the causes of the accident, it is necessary to point out the major design deficiencies of the absorbing rods of the control and scram system. The core height is 7 m, while the absorbing length of the rods amounts to 5 m with 1 m hollow parts above and below it. The bottom ends of the absorbing rods, which go under the core when fully inserted, are filled with graphite. Given such a design, the control rods enter the core followed by one-metre hollow parts and, finally, come the absorbing parts. 

At Chernobyl 4 , there were a total of 211 absorbing rods, 205 of which were fully withdrawn. Simultaneous reinsertion of so many rods initially results in reactivity overshoot (a peak in fission activity), since at first the graphite ends and hollow parts enter the core. In a stable controlled reactor such a burst is nothing to worry about, but in the event of a combination of adverse conditions, such an addition may prove fatal since it leads to prompt neutron reactor runaway. The immediate cause of initial reactivity growth was the initiation of water boiling in the core. This initial reactivity growth reflected one particular drawback: a positive steam void coefficient, which resulted from the core design. This design deficiency is one of the faults which caused operator errors.

Grave design faults in the reactor and the absorbing rods actually predetermined the Chernobyl accident. In 1975, after the accident at the Leningrad plant, and later on, specialists warned about the possibility of another accident in view of deficiencies in core design. Six months before the Chernobyl disaster, a safety inspector at the Kursk plant sent a letter to Moscow in which he pointed out to the chief researcher and chief designer certain design inadequacies of the reactor and the control and protection system rods. The State Supervising Committee for Nuclear Power, however, called his argument groundless.

The course of the accident itself

The course of the events was as follows. With the onset of the reactor coolant pump cavitation, which led to reduced flow rate in the core, the coolant boiled in the pressure tubes. Just then, the shift supervisor pushed the button of the scram system. In response, all the control rods (which had been withdrawn) and the scram rods dropped into the core. However, first to enter the core were the graphite and hollow ends of the rods, which cause reactivity growth; and they entered the core just at the beginning of intensive steam generation. The rise of the core temperature also produced the same effect. Thus there were combined three conditions unfavourable for the core. Immediate reactor runaway began. This was due primarily to gross design deficiencies of the RBMK. It should be recalled here that the ECCS had been made inoperative, locked and sealed.

The subsequent events are well known. The reactor was damaged. The major part of the fuel, graphite and other in-core components were blown out. Radiation levels in the vicinity of the damaged unit amounted to 1,000 to 15,000 R/h, although there were some more distant or sheltered areas where radiation levels were considerably lower.

At first the personnel failed to realize what had happened and just kept on saying, “It is impossible! Everything was done properly.”

Ergonomics considerations in connection with the Soviet report on the accident

The report presented by the Soviet delegation at the International Atomic Energy Association (IAEA) meeting in summer 1986 evidently gave truthful information on the Chernobyl explosion, but a doubt keeps on returning as to whether the emphasis was put in the right places and whether the design inadequacies were not treated much too gently. The report stated that the behaviour of the personnel was caused by the desire to complete the test as soon as possible. Judging from the facts that the personnel violated the procedure for preparing and carrying out tests, violated the test programme itself, and were careless when performing the reactor control, it would seem that the operators were not fully aware of the processes taking place in the reactor and had lost all feeling of danger. According to the report:

The reactor designers failed to provide safety systems designed to prevent an accident in the case of deliberate shut-off of the engineered safety means combined with violations of the operating procedures since they regarded such a combination as unlikely. Hence the initial cause of the accident was a very unlikely violation of the operating procedure and conditions by the plant personnel.

It has become known that in the initial text of the report the words “plant personnel” were followed by the phrase “which showed the design faults of the reactor and the control and protection system rods”.

The designers considered the interference of “clever fools” in plant control unlikely, and therefore failed to develop the corresponding engineered safety mechanisms. Given the phrase in the report stating that the designers considered the actual combination of events unlikely, some questions arise: Had the designers considered all possible situations associated with human activity at the plant? If the answer is positive, then how were they taken into account in the plant design? Unfortunately, the answer to the first question is negative, leaving areas of user-machine interaction undetermined. As a result, onsite emergency training and theoretical and practical training were carried out mainly within a primitive control algorithm.

Ergonomics was not used when designing computer-assisted control systems and control rooms for nuclear plants. As a particularly serious example, an essential parameter indicative of the core state, that is, the number of the control and protection system rods in the core, was displayed on the control board of Chernobyl 4 in a manner inappropriate for perception and comprehension. This inadequacy was overcome only by operator experience in interpreting displays.

Project miscalculations and ignoring human factors had created a delayed-action bomb. It should be emphasized that the design fault of the core and the control system served as a fatal basis for further erroneous actions by operators, and thus the main cause of the accident was the inadequate design of user-machine interaction. Investigators of the disaster called for “respect to human engineering and man-machine interaction, it being the lesson Chernobyl taught us.” Unfortunately, it is difficult to abandon old approaches and stereotyped thinking.

As early as 1976, academician P.L. Kapitza seemed to foresee a disaster for reasons that might have been relevant to preventing a Chernobyl, but his concerns were made known only in 1989. In February 1976, US News and World Report, a weekly news magazine, published a report on the fire at the Browns Ferry nuclear facility in California. Kapitza was so concerned about this accident that he mentioned it in his own report, “Global problems and energy”, delivered in Stockholm in May 1976. Kapitza said in particular:

The accident highlighted the inadequacy of the mathematical methods used to calculate the probability of such events, since these methods do not take into account the probability due to human errors. To solve this problem, it is necessary to take measures to prevent any nuclear accident from taking on a disastrous course.

Kapitza tried to publish his paper in the magazine Nauka i Zhizn (Science and Life), but the paper was rejected on the grounds that it was not advisable “to frighten the public”. The Swedish magazine Ambio had asked Kapitza for his paper but in the long run did not publish it either.

The Academy of Sciences assured Kapitza that there could be no such accidents in the USSR and as an ultimate “proof” gave him the just published Safety Rules for NPPs. These rules contained, for example, such items as “8.1. The actions of the personnel in case of a nuclear accident are determined by the procedure for dealing with the consequences of the accident”!

After Chernobyl

As a direct or indirect consequence of the Chernobyl accident, measures are being developed and put into effect to ensure safe operation of current NPPs and to improve the design and construction of future ones. In particular, measures have been taken to make the scram system more fast-operating and to exclude any possibility of its being deliberately shut off by the personnel. The design of the absorbing rods has been modified and they have been made more numerous.

Furthermore, the pre-Chernobyl procedure for abnormal conditions instructed operators to keep the reactor operating, while according to the current one the reactor must be shut down. New reactors that, basically speaking, are in fact inherently safe are being developed. There have appeared new areas of research which were either ignored or non-existent before Chernobyl, including probabilistic safety analysis and experimental safety bench tests.

However, according to the former USSR Minister of Nuclear Power and Industry, V. Konovalov, the number of failures, shutdowns and incidents at nuclear power plants is still high. Studies show that this is due mainly to the poor quality of the delivered components, to human error and to inadequate solutions by design and engineering bodies. The quality of construction and installation work leaves much to be desired as well.

Various modifications and design changes have become common practice. As a result, and in combination with inadequate training, qualifications of the operating personnel are low. The personnel have to improve their knowledge and skills in the course of their work, based on their experience in plant operation.

Ergonomics lessons are still to be learned

Even the most effective, sophisticated safety control system will fail to provide for plant reliability if human factors are not taken into account. Work is being prepared for the vocational training of personnel in the All-Union Scientific and Research Institute of NPPs, and there are plans to considerably enlarge this effort. It should be admitted, however, that human engineering still is not an integral part of plant design, construction, testing and operation.

The former USSR Ministry of Nuclear Power replied in 1988 to an official inquiry that in the period 1990-2000 there was no need for specialists in human engineering with secondary and higher education as there were no corresponding requests for such personnel from nuclear plants and enterprises.

To solve many of the problems mentioned in this article it is necessary to carry out combined research and development involving physicists, designers, industrial engineers, operating personnel, specialists in human engineering, psychology and other fields. Organizing such joint work entails great difficulties, one particular difficulty being the remaining monopoly of some scientists and groups of scientists on “truth” in the field of nuclear energy and the monopoly of the operating personnel on the information concerning NPP operation. Without available comprehensive information, it is impossible to give a human engineering diagnosis of a NPP and, if necessary, propose ways to eliminate its shortcomings as well as to develop a system of measures to prevent accidents.

In the NPPs of the former Soviet Union the current means for diagnosis, control and computerization are far from accepted international standards; plant control methods are needlessly complicated and confusing; there are no advanced programmes of personnel training; there is poor support of plant operation by designers and highly outdated formats for operating manuals.


In September 1990, after further investigations, two former Chernobyl employees were freed from prison before the end of their terms. Some time later all the imprisoned operating personnel were freed before the appointed time. Many people involved with the reliability and safety of NPPs now believe that the personnel had acted correctly, even though these correct actions resulted in the explosion. The Chernobyl personnel cannot be held responsible for the unexpected magnitude of the accident.

In an attempt to identify those who were responsible for the disaster, the court mainly relied on the opinion of technical specialists who, in this case, were the designers of Chernobyl nuclear power plant. As a result of this one more important Chernobyl lesson is learned: As long as the main legal document that is used to identify responsibility for disasters at such complicated establishments as NPP is something like maintenance instructions produced and changed exclusively by designers of these establishments, it is too technically difficult to find the real reasons for disasters, as well as to take all the necessary precautions to avoid them.

Further, a question still remains as to whether operating personnel should strictly follow the maintenance instructions in the case of disaster or whether they should act according to their knowledge, experience or intuition, which may even contradict the instructions or be unconsciously associated with the threat of severe punishment.

We must state, regrettably, that the question “Who is guilty of the Chernobyl accident?” has not been cleared up. Those responsible should be sought among politicians, physicists, administrators and operators, as well as among development engineers. Convicting mere “switchmen” as in the Chernobyl case, or having clergymen sanctify NPPs with holy water, such as was done with the incident-plagued unit in Smolensk in 1991, cannot be the correct measures to ensure safe and reliable operation of NPPs.

Those considering the Chernobyl disaster merely an unfortunate nuisance of a sort which will never happen again, have to realize that one basic human characteristic is that people do make mistakes—not only operating personnel but also scientists and engineers. Ignoring ergonomic principles about user-machine interactions in any technical or industrial field will result in more frequent and more severe errors.

It is therefore necessary to design technical facilities such as NPPs in such a way that possible errors are discovered before a severe accident can happen. Many ergonomic principles have been derived trying to prevent errors in the first place, for instance in the design of indicators and controls. However, still today these principles are violated in many technical facilities all over the world.

The operating personnel of complex facilities need to be highly qualified, not only for the routine operations but also in the procedures necessary in the case of a deviation from normal status. A sound understanding of the physics and the technologies involved will help the personnel to react better under critical conditions. Such qualifications can only be attained through intensive training.

The constant improvements of user-machine interfaces in all kinds of technical applications, often as a result of minor or major accidents, show that the problem of human errors and thus of user-machine interaction is far from being solved. Continuous ergonomic research and the consequent application of the obtained results aimed at making user-machine interaction more reliable is necessary, especially with technologies that bear a highly destructive power, such as nuclear power. Chernobyl is a severe warning of what can happen if people—scientists and engineers, as well as administrators and politicians—disregard the necessity of including ergonomics in the process of designing and operating complex technical facilities.

Hans Blix, Director General of the IAEA, has stressed this problem with an important comparison. It has been said that the problem of war is much too serious to be left solely to generals. Blix added “that the problems of nuclear power are much too serious to leave them solely to nuclear experts”.


Abeysekera, JDA, H Shahnavaz, and LJ Chapman. 1990. Ergonomics in developing countries. In Advances in Industrial Ergonomics and Safety, edited by B Das. London: Taylor & Francis.

Ahonen, M, M Launis, and T Kuorinka. 1989. Ergonomic Workplace Analysis. Helsinki: Finnish Institute of Occupational Health.

Alvares, C. 1980. Homo Faber: Technology and Culture in India, China and the West from 1500 to Present Day. The Hague: Martinus Nijhoff.

Amalberti, R. 1991. Savoir-faire de l’opérateur: aspects théoriques et pratiques en ergonomie. In Modèle en analyse du travail, edited by R Amalberti, M de Montmollin, and J Thereau. Liège: Mardaga.

Amalberti, R, M Bataille, G Deblon, A Guengant, JM Paquay, C Valot, and JP Menu. 1989. Développement d’aides intelligentes au pilotage: Formalisation psychologique et informatique d’un modèle de comportement du pologage de combat engagé en mission de pènètration. Paris: Rapport CERMA.

Åstrand, I. 1960. Aerobic work capacity in men and women with special reference to age. Acta Physiol Scand 49 Suppl. 169:1-92.

Bainbridge, L. 1981. Le contrôleur de processus. B Psychol XXXIV:813-832.

—. 1986. Asking questions and accessing knowledge. Future Comput Sys 1:143-149.

Baitsch, C. 1985. Kompetenzentwicklung und partizipative Arbeitsgestaltung. Bern: Huber.

Banks, MH and RL Miller. 1984. Reliability and convergent validity of the job component inventory. J Occup Psychol 57:181-184.

Baranson, J. 1969. Industrial Technology for Developing Economies. New York: Praeger.

Bartenwerfer, H. 1970. Psychische Beanspruchung und Erdmüdung. In Handbuch der Psychologie, edited by A Mayer and B Herwig. Göttingen: Hogrefe.

Bartlem, CS and E Locke. 1981. The Coch and French study: A critique and reinterpretation. Hum Relat 34:555-566.

Blumberg, M. 1988. Towards a new theory of job design. In Ergonomics of Hybrid Automated Systems, edited by W Karwowski, HR Parsaei, and MR Wilhelm. Amsterdam: Elsevier.

Bourdon, F and A Weill Fassina. 1994. Réseau et processus de coopération dans la gestion du trafic ferroviaire. Travail Hum. Numéro spécial consacré au travail collectif.

Brehmer, B. 1990. Towards a taxonomy for microworlds. In Taxonomy for an Analysis of Work Domains. Proceedings of the First MOHAWC Workshop, edited by B Brehmer, M de Montmollin and J Leplat. Roskilde: Riso National Laboratory.

Brown DA and R Mitchell. 1986. The Pocket Ergonomist. Sydney: Group Occupational Health Centre.

Bruder. 1993. Entwicklung eines wissensbusierten Systems zur belastungsanalytisch unterscheidbaren Erholungszeit. Düsseldorf: VDI-Verlag.

Caverni, JP. 1988. La verbalisation comme source d’observables pour l’étude du fonctionnnement cognitif. In Psychologie cognitive: Modèles et méthodes, edited by JP Caverni, C Bastien, P Mendelson, and G Tiberghien. Grenoble: Presses Univ. de Grenoble.

Campion, MA. 1988. Interdisciplinary approaches to job design: A constructive replication with extensions. J Appl Psychol 73:467-481.

Campion, MA and PW Thayer. 1985. Development and field evaluation of an inter-disciplinary measure of job design. J Appl Psychol 70:29-43.

Carter, RC and RJ Biersner. 1987. Job requirements derived from the Position Analysis Questionnaire and validity using military aptitude test scores. J Occup Psychol 60:311-321.

Chaffin, DB. 1969. A computerized biomechanical model-development of and use in studying gross body actions. J Biomech 2:429-441.

Chaffin, DB and G Andersson. 1984. Occupational Biomechanics. New York: Wiley.

Chapanis, A. 1975. Ethnic Variables in Human Factors Engineering. Baltimore: Johns Hopkins University.

Coch, L and JRP French. 1948. Overcoming resistance to change. Hum Relat 1:512-532.

Corlett, EN and RP Bishop. 1976. A technique for assessing postural discomfort. Ergonomics 19:175-182.

Corlett, N. 1988. The investigation and evaluation of work and workplaces. Ergonomics 31:727-734.

Costa, G, G Cesana, K Kogi, and A Wedderburn. 1990. Shiftwork: health, sleep and performance. Frankfurt: Peter Lang.

Cotton, JL, DA Vollrath, KL Froggatt, ML Lengnick-Hall, and KR Jennings. 1988. Employee participation: Diverse forms and different outcomes. Acad Manage Rev 13:8-22.

Cushman, WH and DJ Rosenberg. 1991. Human Factors in Product Design. Amsterdam: Elsevier.

Dachler, HP and B Wilpert. 1978. Conceptual dimensions and boundaries of participation in organizations: A critical evaluation. Adm Sci Q 23:1-39.

Daftuar, CN. 1975. The role of human factors in underdeveloped countries, with special reference to India. In Ethnic Variable in Human Factor Engineering, edited by Chapanis. Baltimore: Johns Hopkins University.

Das, B and RM Grady. 1983a. Industrial workplace layout design. An application of engineering anthropometry. Ergonomics 26:433-447.

—. 1983b. The normal working area in the horizontal plane. A comparative study between Farley’s and Squire’s concepts. Ergonomics 26:449-459.

Deci, EL. 1975. Intrinsic Motivation. New York: Plenum Press.

Decortis, F and PC Cacciabue. 1990. Modèlisation cognitive et analyse de l’activité. In Modèles et pratiques de l’analyse du travail, edited by R Amalberti, M Montmollin, and J Theureau. Brussels: Mardaga.

DeGreve, TB and MM Ayoub. 1987. A workplace design expert system. Int J Ind Erg 2:37-48.

De Keyser, V. 1986. De l’évolution des métiers. In Traité de psychologie du travail, edited by C Levy- Leboyer and JC Sperandio. Paris: Presses Universitaires de France.

—. 1992. Man within the Production Line. Proceedings of the Fourth Brite-EuRam Conference, 25-27 May, Séville, Spain. Brussels: EEC.

De Keyser, V and A Housiaux. 1989. The Nature of Human Expertise. Rapport Intermédiaire Politique Scientifique. Liège: Université de Liège.

De Keyser, V and AS Nyssen. 1993. Les erreurs humaines en anesthésie. Travail Hum 56:243-266.

De Lisi, PS. 1990. Lesson from the steel axe: Culture, technology and organizational change. Sloan Manage Rev 32:83-93.

Dillon, A. 1992. Reading from paper versus screen: A critical review of the empirical literature. Ergonomics 35:1297-1326.

Dinges, DF. 1992. Probing the limits of functional capacity: The effects of sleep loss on short-duration tasks. In Sleep, Arousal, and Performance, edited by RJ Broughton and RD Ogilvie. Boston: Birkhäuser.

Drury, CG. 1987. A biomechanical evaluation of the repetitive motion injury potential of industrial jobs. Sem Occup Med 2:41-49.

Edholm, OG. 1966. The assessment of habitual activity. In Physical Activity in Health and Disease, edited by K Evang and K Lange-Andersen. Oslo: Universitetterlaget.

Eilers, K, F Nachreiner, and K Hänicke. 1986. Entwicklung und Überprüfung einer Skala zur Erfassung subjektiv erlebter Anstrengung. Zeitschrift für Arbeitswissenschaft 40:215-224.

Elias, R. 1978. A medicobiological approach to workload. Note No. 1118-9178 in Cahiers De Notes Documentaires—Sécurité Et Hygiène Du Travail. Paris: INRS.

Elzinga, A and A Jamison. 1981. Cultural Components in the Scientific Attitude to Nature: Eastern and Western Mode. Discussion paper No. 146. Lund: Univ. of Lund, Research Policy Institute.

Emery, FE. 1959. Characteristics of Socio-Technical Systems. Document No. 527. London: Tavistock.

Empson, J. 1993. Sleep and Dreaming. New York: Harvester Wheatsheaf.

Ericson, KA and HA Simon. 1984. Protocol Analysis: Verbal Reports As Data. Cambridge, Mass.: MIT Press.

European Committee for Standardization (CEN). 1990. Ergonomic Principles of the Design of Work Systems. EEC Council Directive 90/269/EEC, The Minimum Health and Safety Requirements for the Manual Handling of Loads. Brussels: CEN.

—. 1991. CEN Catalogue 1991: Catalogue of European Standards. Brussels: CEN.

—. 1994. Safety of Machinery: Ergonomic Design Principles. Part 1: Terminology and General Principles. Brussels: CEN.

Fadier, E. 1990. Fiabilité humaine: méthodes d’analyse et domaines d’application. In Les facteurs humains de la fiabilité dans les systèmes complexes, edited by J Leplat and G De Terssac. Marseilles: Octares.

Falzon, P. 1991. Cooperative dialogues. In Distributed Decision Making. Cognitive Models for Cooperative Works, edited by J Rasmussen, B Brehmer, and J Leplat. Chichester: Wiley.

Faverge, JM. 1972. L’analyse du travail. In Traité de psychologie appliqueé, edited by M Reuchlin. Paris: Presses Universitaires de France.

Fisher, S. 1986. Stress and Strategy. London: Erlbaum.

Flanagan, JL. 1954. The critical incident technique. Psychol Bull 51:327-358.

Fleishman, EA and MK Quaintance. 1984. Toxonomies of Human Performance: The Description of Human Tasks. New York: Academic Press.

Flügel, B, H Greil, and K Sommer. 1986. Anthropologischer Atlas. Grundlagen und Daten. Deutsche Demokratische Republik. Berlin: Verlag tribüne.

Folkard, S and T Akerstedt. 1992. A three-process model of the regulation of alertness sleepiness. In Sleep, Arousal and Performance, edited by RJ Broughton and BD Ogilvie. Boston: Birkhäuser.

Folkard, S and TH Monk. 1985. Hours of work: Temporal factors in work scheduling . Chichester: Wiley.

Folkard, S, TH Monk, and MC Lobban. 1978. Short and long-term adjustment of circadian rhythms in “permanent” night nurses. Ergonomics 21:785-799.

Folkard, S, P Totterdell, D Minors and J Waterhouse. 1993. Dissecting circadian performance rhythms: Implications for shiftwork. Ergonomics  36(1-3):283-88.

Fröberg, JE. 1985. Sleep deprivation and prolonged working hours. In Hours of Work: Temporal Factors in Work Scheduling, edited by S Folkard and TH Monk. Chichester: Wiley.

Fuglesang, A. 1982. About Understanding Ideas and Observations on Cross-Cultural  Communication. Uppsala: Dag Hammarskjöld Foundation.

Geertz, C. 1973. The Interpretation of Cultures. New York: Basic Books.

Gilad, I. 1993. Methodology for functional ergonomic evaluation of repetitive operations. In Advances in Industrial Egonomics and Safety, edited by Nielsen and Jorgensen. London: Taylor & Francis.

Gilad, I and E Messer. 1992. Biomechanics considerations and ergonomic design in diamond polishing. In Advances in Industrial Ergonomics and Safety, edited by Kumar. London: Taylor & Francis.

Glenn, ES and CG Glenn. 1981. Man and Mankind: Conflict and Communication between Cultures. Norwood, NJ: Ablex.

Gopher, D and E Donchin. 1986. Workload—An examination of the concept. In Handbook of Perception and Human Performance, edited by K Boff, L Kaufman, and JP Thomas. New York: Wiley.

Gould, JD. 1988. How to design usable systems. In Handbook of Human Computer Interaction, edited by M Helander. Amsterdam: Elsevier.

Gould, JD and C Lewis. 1985. Designing for usability: Key principles and what designers think. Commun ACM 28:300-311.

Gould, JD, SJ Boies, S Levy, JT Richards, and J Schoonard. 1987. The 1984 Olympic message system: A test of behavioral principles of the design. Commun ACM 30:758-769.

Gowler, D and K Legge. 1978. Participation in context: Towards a synthesis of the theory and practice of organizational change, part I. J Manage Stud 16:150-175.

Grady, JK and J de Vries. 1994. RAM: The Rehabilitation Technology Acceptance Model as a Base for an Integral Product Evaluation. Instituut voor Research, Ontwikkeling en Nascholing in de Gezondheidszorg (IRON) and University Twente, Department of Biomedical Engineering.

Grandjean, E. 1988. Fitting the Task to the Man. London: Taylor & Francis.

Grant, S and T Mayes. 1991. Cognitive task analysis? In Human-Computer Interactionand Complex Systems, edited by GS Weir and J Alty. London: Academic Press.

Greenbaum, J and M Kyng. 1991. Design At Work: Cooperative Design of Computer Systems. Hillsdale, NJ: Lawrence Erlbaum.

Greuter, MA and JA Algera. 1989. Criterion development and job analysis. In Assessment and Selection in Organizations, edited by P Herlot. Chichester: Wiley.

Grote, G. 1994. A participatory approach to the complementary design of highly automated work systems. In Human Factors in Organizational Design and Management, edited by G Bradley and HW Hendrick. Amsterdam: Elsevier.

Guelaud, F, M-N Beauchesne, J Gautrat, and G Roustang. 1977. Pour une analyse des conditions du travail ouvrier dans l’entreprise. Paris: A. Colin.

Guillerm, R, E Radziszewski, and A Reinberg. 1975. Circadian rhythms of six healthy young men over a 4-week period with night-work every 48 h and a 2 per cent Co2 atmosphere. In Experimental Studies of Shiftwork, edited by P Colquhoun, S Folkard, P Knauth, and J Rutenfranz. Opladen: Westdeutscher Werlag.

Hacker, W. 1986. Arbeitspsychologie. In Schriften zur Arbeitpsychologie, edited by E Ulich. Bern: Huber.

Hacker, W and P Richter. 1994. Psychische Fehlbeanspruchung. Ermüdung, Monotonie, Sättigung, Stress. Heidelberg: Springer.

Hackman, JR and GR Oldham. 1975. Development of the job diagnostic survey. J Appl Psychol 60:159-170.

Hancock, PA and MH Chignell. 1986. Toward a Theory of Mental Work Load: Stress and Adaptability in Human-Machine Systems. Proceedings of the IEEE International Conference On Systems, Man, and Cybernetics. New York: IEEE Society.

Hancock, PA and N Meshkati. 1988. Human Mental Workload. Amsterdam: North Holland.

Hanna, A (ed.). 1990. Annual Design Review ID. 37 (4).

Härmä, M. 1993. Individual differences in tolerance to shiftwork: a review. Ergonomics  36:101-109.

Hart, S and LE Staveland. 1988. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Human Mental Work Load, edited by PA Hancock and N Meshkati. Amsterdam: North Holland.

Hirschheim, R and HK Klein. 1989. Four paradigms of information systems development. Commun ACM 32:1199-1216.

Hoc, JM. 1989. Cognitive approaches to process control. In Advances in Cognitive Science, edited by G Tiberghein. Chichester: Horwood.

Hofstede, G. 1980. Culture’s Consequences: International Differences in Work-Related Values. Beverly Hills, Calif.: Sage Univ. Press.

—. 1983. The cultural relativity of organizational practices and theories. J Int Stud :75-89.

Hornby, P and C Clegg. 1992. User participation in context: A case study in a UK bank. Behav Inf Technol 11:293-307.

Hosni, DE. 1988. The transfer of microelectronics technology to the third world. Tech Manage Pub TM 1:391-3997.

Hsu, S-H and Y Peng. 1993. Control/display relationship of the four-burner stove: A reexamination. Hum Factors 35:745-749.

International Labour Organization (ILO). 1990.The hours we work: new work schedules in policy and practice. Cond Wor Dig 9.

International Organization for Standardization (ISO). 1980. Draft Proposal for Core List of Anthropometric Measurements ISO/TC 159/SC 3 N 28 DP 7250. Geneva: ISO.

—. 1996. ISO/DIS 7250 Basic Human Body Measurements for Technological Design. Geneva: ISO.

Japan Industrial Design Promotion Organization (JIDPO). 1990. Good Design Products 1989. Tokyo: JIDPO.

Jastrzebowski, W. 1857. Rys ergonomiji czyli Nauki o Pracy, opartej naprawdach poczerpnietych z Nauki Przyrody. Przyoda i Przemysl 29:227-231.

Jeanneret, PR. 1980. Equitable job evaluation and classification with the Position Analysis Questionnaire. Compens Rev 1:32-42.

Jürgens, HW, IA Aune, and U Pieper. 1990. International data on anthropometry. Occupational Safety and Health Series. Geneva: ILO.

Kadefors, R. 1993. A model for assessment and design of workplaces for manual welding. In The Ergonomics of Manual Work, edited by WS Marras, W Karwowski, and L Pacholski. London: Taylor & Francis.

Kahneman, D. 1973. Attention and Effort. Englewood Cliffs, NJ: Prentice Hall.

Karhu, O, P Kansi, and I Kuorinka. 1977. Correcting working postures in industry: A practical method for analysis. Appl Ergon 8:199-201.

Karhu, O, R Harkonen, P Sorvali, and P Vepsalainen. 1981. Observing working postures in industry: Examples of OWAS application. Appl Ergon 12:13-17.

Kedia, BL and RS Bhagat. 1988. Cultural constraints on transfer of technology across nations: Implications for research in international and comparative management. Acad Manage Rev 13:559-571.

Keesing, RM. 1974. Theories of culture. Annu Rev Anthropol 3:73-79.

Kepenne, P. 1984. La charge de travail dans une unité de soins de médecine. Mémoire. Liège: Université de Liège.

Kerguelen, A. 1986. L’observation systématique en ergonomie: Élaboration d’un logiciel d’aide au recueil et à l’analyse des données. Diploma in Ergonomics Thesis, Conservatoire National des Arts et Métiers, Paris.

Ketchum, L. 1984. Sociotechnical design in a third world country: The railway maintenance depot at Sennar in Sudan. Hum Relat 37:135-154.

Keyserling, WM. 1986. A computer-aided system to evaluate postural stress in the workplace. Am Ind Hyg Assoc J 47:641-649.

Kingsley, PR. 1983. Technological development: Issues, roles and orientation for social psychology. In Social Psychology and Developing Countries, edited by Blacker. New York: Wiley.

Kinney, JS and BM Huey. 1990. Application Principles for Multicolored Displays. Washington, DC: National Academy Press.

Kivi, P and M Mattila. 1991. Analysis and improvement of work postures in building industry: Application of the computerized OWAS method. Appl Ergon 22:43-48.

Knauth, P, W Rohmert and J Rutenfranz. 1979. Systemic selection of shift plans for continuous production with the aid of work-physiological criteria. Appl Ergon 10(1):9-15.

Knauth, P. and J Rutenfranz. 1981. Duration of sleep related to the type of shift work, in Night and shiftwork: biological and social aspects , edited by A Reinberg, N Vieux, and P Andlauer. Oxford Pergamon Press.

Kogi, K. 1982. Sleep problems in night and shift work. II. Shiftwork: Its practice and improvement . J Hum Ergol:217-231.

—. 1981. Comparison of resting conditions between various shift rotation systems for industrial workers, in Night and shift work. Biological and social aspects , edited by A Reinberg, N Vieux, and P Andlauer. Oxford: Pergamon.

—. 1985. Introduction to the problems of shiftwork. In Hours of Work: Temporal Factors in Work-Scheduling, edited by S Folkard and TH Monk. Chichester: Wiley.

—. 1991. Job content and working time: The scope for joint change. Ergonomics 34:757-773.

Kogi, K and JE Thurman. 1993. Trends in approaches to night and shiftwork and new international standards. Ergonomics 36:3-13.

Köhler, C, M von Behr, H Hirsch-Kreinsen, B Lutz, C Nuber, and R Schultz-Wild. 1989. Alternativen der Gestaltung von Arbeits- und Personalstrukturen bei rechnerintegrierter Fertigung. In Strategische Optionen der Organisations- und Personalentwicklung bei CIM Forschungsbericht KfK-PFT 148, edited by Institut für Sozialwissenschaftliche Forschung. Karlsruhe: Projektträgerschaft Fertigungstechnik.

Koller, M. 1983. Health risks related to shift work. An example of time-contingent effects of long-term stress. Int Arch Occ Env Health 53:59-75.

Konz, S. 1990. Workstation organization and design. Ergonomics 32:795-811.

Kroeber, AL and C Kluckhohn. 1952. Culture, a critical review of concepts and definitions. In Papers of the Peabody Museum. Boston: Harvard Univ.

Kroemer, KHE. 1993. Operation of ternary chorded keys. Int J Hum Comput Interact 5:267-288.

—. 1994a. Locating the computer screen: How high, how far? Ergonomics in Design (January):40.

—. 1994b. Alternative keyboards. In Proceedings of the Fourth International Scientific Conference WWDU ‘94. Milan: Univ. of Milan.

—. 1995. Ergonomics. In Fundamentals of Industrial Hygiene, edited by BA Ploog. Chicago: National Safety Council.

Kroemer, KHE, HB Kroemer, and KE Kroemer-Elbert. 1994. Ergonomics: How to Design for Ease and Efficiency. Englewood Cliffs, NJ: Prentice Hall.

Kwon, KS, SY Lee, and BH Ahn. 1993. An approach to fuzzy expert systems for product colour design. In The Ergonomics of Manual Work, edited by Maras, Karwowski, Smith, and Pacholski. London: Taylor & Francis.

Lacoste, M. 1983. Des situations de parole aux activités interprétives. Psychol Franç 28:231-238.

Landau, K and W Rohmert. 1981. AET-A New Job Analysis Method. Detroit, Mich.: AIIE Annual Conference.

Laurig, W. 1970. Elektromyographie als arbeitswissenschaftliche Untersuchungsmethode zur Beurteilung von statischer Muskelarbeit. Berlin: Beuth.

—. 1974. Beurteilung einseitig dynamischer Muskelarbeit. Berlin: Beuth.

—. 1981. Belastung, Beanspruchung und Erholungszeit bei energetisch-muskulärer Arbeit—Literaturexpertise. In Forschungsbericht Nr. 272 der Bundesanstalt für Arbeitsschutz und Unfallforschung Dortmund. Bremerhaven: Wirtschaftsverlag NW.

—. 1992. Grundzüge der Ergonomie. Erkenntnisse und Prinzipien. Berlin, Köln: Beuth Verlag.

Laurig, W and V Rombach. 1989. Expert systems in ergonomics: Requirements and an approach. Ergonomics 32:795-811.

Leach, ER. 1965. Culture and social cohesion: An anthropologist’s view. In Science and Culture, edited by Holten. Boston: Houghton Mifflin.

Leana, CR, EA Locke, and DM Schweiger. 1990. Fact and fiction in analyzing research on participative decision making: A critique of Cotton, Vollrath, Froggatt, Lengnick-Hall, and Jennings. Acad Manage Rev 15:137-146.

Lewin, K. 1951. Field Theory in Social Science. New York: Harper.

Liker, JK, M Nagamachi, and YR Lifshitz. 1988. A Comparitive Analysis of Participatory Programs in US and Japan Manufacturing Plants. Ann Arbor, Mich.: Univ. of Michigan, Center for Ergonomics, Industrial and Operational Engineering.

Lillrank, B and N Kano. 1989. Continuous Improvement: Quality Control Circles in Japanese Industries. Ann Arbor, Mich.: Univ. of Michigan, Center for Japanese Studies.

Locke, EA and DM Schweiger. 1979. Participation in decision making: One more look. In Research in Organizational Behavior, edited by BM Staw. Greenwich, Conn.: JAI Press.

Louhevaara, V, T Hakola, and H Ollila. 1990. Physical work and strain involved in manual sorting of postal parcels. Ergonomics 33:1115-1130.

Luczak, H. 1982. Belastung, Beanspruchung und Erholungszeit bei informatorisch- mentaler Arbeit — Literaturexpertise. Forschungsbericht der Bundesanstalt für Arbeitsschutz und Unfallforschung Dortmund . Bremerhaven: Wirtschaftsverlag NW.

—. 1983. Ermüdung. In Praktische Arbeitsphysiologie, edited by W Rohmert and J Rutenfranz. Stuttgart: Georg Thieme Verlag.

—. 1993. Arbeitswissenschaft. Berlin: Springer Verlag.

Majchrzak, A. 1988. The Human Side of Factory Automation. San Francisco: Jossey-Bass.

Martin, T, J Kivinen, JE Rijnsdorp, MG Rodd, and WB Rouse. 1991. Appropriate automation-integrating technical, human, organization, economic and cultural factors. Automatica 27:901-917.

Matsumoto, K and M Harada. 1994. The effect of night-time naps on recovery from fatigue following night work. Ergonomics 37:899-907.

Matthews, R. 1982. Divergent conditions in the technological development of India and Japan. Lund Letters on Technology and Culture, No. 4. Lund: Univ. of Lund, Research Policy Institute.

McCormick, EJ. 1979. Job Analysis: Methods and Applications. New York: American Management Association.

McIntosh, DJ. 1994. Integration of VDUs into the US office work environment. In Proceedings of the Fourth International Scientific Conference WWDU ‘94. Milan: Univ. of Milan.

McWhinney. 1990. The Power of Myth in Planning and Organizational Change, 1989 IEEE Technics, Culture and Consequences. Torrence, Calif.: IEEE Los Angeles Council.

Meshkati, N. 1989. An etiological investigation of micro and macroergonomics factors in the Bhopal disaster: Lessons for industries of both industrialized and developing countries. Int J Ind Erg 4:161-175.

Minors, DS and JM Waterhouse. 1981. Anchor sleep as a synchronizer of rhythms on abnormal routines. Int J Chronobiology : 165-188.

Mital, A and W Karwowski. 1991. Advances in Human Factors/Ergonomics. Amsterdam: Elsevier.

Monk, TH. 1991. Sleep, Sleepiness and Performance . Chichester: Wiley.

Moray, N, PM Sanderson, and K Vincente. 1989. Cognitive task analysis for a team in a complex work domain: A case study. Proceedings of the Second European Meeting On Cognitive Science Approaches to Process Control, Siena, Italy.

Morgan, CT, A Chapanis, JS III Cork, and MW Lund. 1963. Human Engineering Guide to Equipment Design. New York: McGraw-Hill.

Mossholder, KW and RD Arvey. 1984. Synthetic validity: A conceptual and comparative review. J Appl Psychol 69:322-333.

Mumford, E and Henshall. 1979. A Participative Approach to Computer Systems Design. London: Associated Business Press.

Nagamachi, M. 1992. Pleasantness and Kansei engineering. In Measurement Standards. Taejon, Korea: Korean Research Institute of Standards and Science Publishing.

National Institute for Occupational Safety and Health (NIOSH). 1981. Work Practices Guide for Manual Lifting. Cincinnati, Ohio: US Department of Health and Human Services.

—. 1990. OSHA Instruction CPL 2.85: Directorate of Compliance Programs: Appendix C, Guidelines Auggested By NIOSH for Videotape Evaluation of Work Station for Upper Extremities Cumulative Trauma Disorders. Washington, DC: US Department of Health and Human Services.

Navarro, C. 1990. Functional communication and problem-solving in a bus traffic-regulation task. Psychol Rep 67:403-409.

Negandhi, ART. 1975. Modern Organizational Behaviour. Kent: Kent Univ..

Nisbett, RE and TD De Camp Wilson. 1977. Telling more than we know. Psychol Rev 84:231-259.

Norman, DA. 1993. Things That Make Us Smart. Reading: Addison-Wesley.

Noro, K and AS Imada. 1991. Participatory Ergonomics. London: Taylor & Francis.

O’Donnell, RD and FT Eggemeier. 1986. Work load assessment methodology. In Handbook of Perception and Human Performance. Cognitive Processes and Performance, edited by K Boff, L Kaufman, and JP Thomas. New York: Wiley.

Pagels, HR. 1984. Computer culture: The scientific, intellectual and social impact of the computer. Ann NY Acad Sci :426.

Persson, J and Å Kilbom. 1983. VIRA—En Enkel Videofilmteknik För Registrering OchAnalys Av Arbetsställningar Och—Rörelser. Solna, Sweden: Undersökningsrapport,Arbetraskyddsstyrelsen.

Pham, DT and HH Onder. 1992. A knowledge-based system for optimizing workplace layouts using a genetic algorithm. Ergonomics 35:1479-1487.

Pheasant, S. 1986. Bodyspace, Anthropometry, Ergonomics and Design. London: Taylor & Francis.

Poole, CJM. 1993. Seamstress’ finger. Brit J Ind Med 50:668-669.

Putz-Anderson, V. 1988. Cumulative Trauma Disorders. A Manual for Musculoskeletal Diseases of the Upper Limbs. London: Taylor & Francis.

Rasmussen, J. 1983. Skills, rules, and knowledge: Sinds, signs, symbols and other distinctions in human performance models. IEEE T Syst Man Cyb 13:257-266.

—. 1986. A framework for cognitive task analysis in systems design. In Intelligent Decision Support in Process Environments, edited by E Hollnagel, G Mancini, and DD Woods. Berlin: Springer.

Rasmussen, J, A Pejtersen, and K Schmidts. 1990. In Taxonomy for Analysis of Work Domains. Proceedings of the First MOHAWC Workshop, edited by B Brehmer, M de Montmollin and J Leplat. Roskilde: Riso National Laboratory.

Reason, J. 1989. Human Error. Cambridge: CUP.

Rebiffé, R, O Zayana, and C Tarrière. 1969. Détermination des zones optimales pour l’emplacement des commandes manuelles dans l’espace de travail. Ergonomics 12:913-924.

Régie nationale des usines Renault (RNUR). 1976. Les profils de poste: Methode d’analyse des conditions de travail. Paris: Masson-Sirtes.

Rogalski, J. 1991. Distributed decision making in emergency management: Using a method as a framework for analysing cooperative work and as a decision aid. In Distributed Decision Making. Cognitive Models for Cooperative Work, edited by J Rasmussen, B Brehmer, and J Leplat. Chichester: Wiley.

Rohmert, W. 1962. Untersuchungen über Muskelermüdung und Arbeitsgestaltung. Bern: Beuth-Vertrieb.

—. 1973. Problems in determining rest allowances. Part I: Use of modern methods to evaluate stress and strain in static muscular work. Appl Ergon 4(2):91-95.

—. 1984. Das Belastungs-Beanspruchungs-Konzept. Z Arb wiss 38:193-200.

Rohmert, W and K Landau. 1985. A New Technique of Job Analysis. London: Taylor & Francis.

Rolland, C. 1986. Introduction à la conception des systèmes d’information et panorama des méthodes disponibles. Génie Logiciel 4:6-11.

Roth, EM and DD Woods. 1988. Aiding human performance. I. Cognitive analysis. Travail Hum 51:39-54.

Rudolph, E, E Schönfelder, and W Hacker. 1987. Tätigkeitsbewertungssystem für geistige arbeit mit und ohne Rechnerunterstützung (TBS-GA). Berlin: Psychodiagnostisches Zentrum der Humboldt-Universität.

Rutenfranz, J. 1982. Occupational health measures for night- and shiftworkers. II. Shiftwork: Its practice and improvement. J Hum Ergol:67-86.

Rutenfranz, J, J Ilmarinen, F Klimmer, and H Kylian. 1990. Work load and demanded physical performance capacity under different industrial working conditions. In Fitness for Aged, Disabled, and Industrial Workers, edited by M Kaneko. Champaign, Ill.: Human Kinetics Books.

Rutenfranz, J, P Knauth, and D Angersbach. 1981. Shift work research issues. In Biological Rhythms, Sleep and Shift Work , edited by LC Johnson, DI Tepas, WP Colquhoun, and MJ Colligan. New York: Spectrum Publications Medical and Scientific Books.

Saito, Y. and K Matsumoto. 1988. Variations of physiological functions and psychological measures and their relationship on delayed shift of sleeping time.  Jap J Ind Health  30:196-205.

Sakai, K, A Watanabe, N Onishi, H Shindo, K Kimotsuki, H Saito, and K Kogl. 1984. Conditions of night naps effective to facilitate recovery from night work fatigue.  J Sci  Lab 60: 451-478.

Savage, CM and D Appleton. 1988. CIM and Fifth Generation Management. Dearborn: CASA/SME Technical Council.

Savoyant, A and J Leplat. 1983. Statut et fonction des communications dans l’activité des équipes de travail. Psychol Franç 28:247-253.

Scarbrough, H and JM Corbett. 1992. Technology and Organization. London: Routledge.

Schmidtke, H. 1965. Die Ermüdung. Bern: Huber.

—. 1971. Untersuchungen über den Erholunggszeitbedarf bei verschiedenen Arten gewerblicher Tätigkeit. Berlin: Beuth-Vertrieb.

Sen, RN. 1984. Application of ergonomics to industrially developing countries. Ergonomics 27:1021-1032.

Sergean, R. 1971. Managing Shiftwork. London: Gower Press.

Sethi, AA, DHJ Caro, and RS Schuler. 1987. Strategic Management of Technostress in an Information Society. Lewiston: Hogrefe.

Shackel, B. 1986. Ergonomics in design for usability. In People and Computer: Design for Usability, edited by MD Harrison and AF Monk. Cambridge: Cambridge Univ. Press.

Shahnavaz, H. 1991. Transfer of Technology to Industrially Developing Countries and Human Factors Consideration TULEÅ 1991: 22, 23024. Luleå Univ., Luleå, Sweden: Center for Ergonomics of Developing Countries.

Shahnavaz, H, J Abeysekera, and A Johansson. 1993. Solving multi-factorial work-environment problems through participatory ergonomics: Case study: VDT operators. In Ergonomics of Manual Work, edited by E Williams, S Marrs, W Karwowski, JL Smith, and L Pacholski. London: Taylor & Francis.

Shaw, JB and JH Riskind. 1983. Predicting job stress using data from the Position Analysis Questionnaire (PAQ). J Appl Psychol 68:253-261.

Shugaar, A. 1990. Ecodesign: New products for a greener culture. Int Herald Trib, 17.

Sinaiko, WH. 1975. Verbal factors in human engineering: Some cultural and psychological data. In Ethnic Variables in Human Factors Engineering, edited by A Chapanis. Baltimore: Johns Hopkins Univ..

Singleton, WT. 1982. The Body At Work. Cambridge: CUP.

Snyder, HL. 1985a. Image quality: Measures and visual performance. In Flat Panel Displays and CRTs, edited by LE Tannas. New York: Van Nostrand Reinhold.

—. 1985b. The visual system: Capabilities and limitations. In Flat Panel Displays and CRTs, edited by LE Tannas. New York: Van Nostrand Reinhold.

Solomon, CM. 1989. The corporate response to work force diversity. Pers J 68:42-53.

Sparke, P. 1987. Modern Japanese Design. New York: EP Dutton.

Sperandio, JC. 1972. Charge de travail et régulation des processus opératoires. Travail Hum 35:85-98.

Sperling, L, S Dahlman, L Wikström, A Kilbom, and R Kadefors. 1993. A cube model for the classification of work with hand tools and the formulation of functional requirements. Appl Ergon 34:203-211.

Spinas, P. 1989. User oriented software development and dialogue design. In Work With Computers: Organizational, Management, Stress and Health Aspects, edited by MJ Smith and G Salvendy. Amsterdam: Elsevier.

Staramler, JH. 1993. The Dictionary of Human Factors Ergonomics. Boca Raton: CRC Press.

Strohm, O, JK Kuark, and A Schilling. 1993. Integrierte Produktion: Arbeitspsychologische Konzepte und empirische Befunde, Schriftenreihe Mensch, Technik, Organisation. In CIM—Herausforderung an Mensch, Technik, Organisation, edited by G Cyranek and E Ulich. Stuttgart, Zürich: Verlag der Fachvereine.

Strohm, O, P Troxler and E Ulich. 1994. Vorschlag für die Restrukturierung eines  Produktionsbetriebes. Zürich: Institut für Arbietspsychologie der ETH.

Sullivan, LP. 1986. Quality function deployment: A system to assure that customer needs drive the product design and production process. Quality Progr :39-50.

Sundin, A, J Laring, J Bäck, G Nengtsson, and R Kadefors. 1994. An Ambulatory Workplace for Manual Welding: Productivity through Ergonomics. Manuscript. Göteborg: Lindholmen Development.

Tardieu, H, D Nanci, and D Pascot. 1985. Conception d’un système d’information. Paris: Editions d’Organisation.

Teiger, C, A Laville, and J Durafourg. 1974. Taches répétitives sous contrainte de temps et charge de travail. Rapport no 39. Laboratoire de physiologie du travail et d’ergonomie du CNAM. 

Torsvall, L, T Akerstedt, and M. Gillberg. 1981. Age, sleep and irregular workhours: a field study with EEG recording, catecholamine excretion and self-ratings. Scand J Wor Env Health  7:196-203.

Ulich, E. 1994. Arbeitspsychologie 3. Auflage. Zürich: Verlag der Fachvereine and Schäffer-Poeschel.

Ulich, E, M Rauterberg, T Moll, T Greutmann, and O Strohm. 1991. Task orientation and user-oriented dialogue design. In Int J Human-Computer Interaction  3:117-144.

United Nations Educational, Scientific and Cultural Organization (UNESCO). 1992. Ergonomics Impact of Science on Society. Vol. 165. London: Taylor & Francis.

Van Daele, A. 1988. L’écran de visualisation ou la communication verbale? Analyse comparative de leur utilisation par des opérateurs de salle de contrôle en sidérurgie. Travail Hum 51(1):65-80.

—. 1992. La réduction de la complexité par les opérateurs dans le contrôle de processus continus. contribution à l’étude du contrôle par anticipation et de ses conditions de mise en œuvre. Liège: Université de Liège.

Van der Beek, AJ, LC Van Gaalen, and MHW Frings-Dresen. 1992. Working postures and activities of lorry drivers: A reliability study of on-site observation and recording on a pocket computer. Appl Ergon 23:331-336.

Vleeschdrager, E. 1986. Hardness 10: diamonds . Paris.

Volpert, W. 1987. Psychische Regulation von Arbeitstätigkeiten. In Arbeitspsychologie. Enzklopüdie der Psychologie, edited by U Kleinbeck and J Rutenfranz. Göttingen: Hogrefe.

Wagner, R. 1985. Job analysis at ARBED. Ergonomics 28:255-273.

Wagner, JA and RZ Gooding. 1987. Effects of societal trends on participation research. Adm Sci Q 32:241-262.

Wall, TD and JA Lischeron. 1977. Worker Participation: A Critique of the Literature and Some Fresh Evidence. London: McGraw-Hill.

Wang, WM-Y. 1992. Usability Evaluation for Human-Computer Interaction (HCI). Luleå, Sweden: Luleå Univ. of Technology.

Waters, TR, V Putz-Anderson, A Garg, and LJ Fine. 1993. Revised NIOSH equation for the design and evaluation of manual handling tasks. Ergonomics 36:749-776.

Wedderburn, A. 1991. Guidelines for shiftworkers. Bulletin of European Shiftwork Topics (BEST) No. 3. Dublin: European Foundation for the Improvement of Living and Working Conditions.

Welford, AT. 1986. Mental workload as a function of demand, capacity, strategy and skill. Ergonomics 21:151-176.

White, PA. 1988. Knowing more about what we tell: ‘Introspective access’ and causal report accuracy, 10 years later. Brit J Psychol 79:13-45.

Wickens, C. 1992. Engineering Psychology and Human Performance. New York: Harper Collins.

Wickens, CD and YY Yeh. 1983. The dissociation between subjective work load and performance: A multiple resources approach. In Proceedings of the Human Factors Society 27th Annual Meeting. Santa Monica, Calif.: Human Factors Society.

Wieland-Eckelmann, R. 1992. Kognition, Emotion und Psychische Beanspruchung. Göttingen: Hogrefe.

Wikström.L, S Byström, S Dahlman, C Fransson, R Kadefors, Å Kilbom, E Landervik, L Lieberg, L Sperling, and J Öster. 1991. Criterion for Selection and Development of Hand Tools. Stockholm: National Institute of Occupational Health.

Wilkinson, RT. 1964. Effects of up to 60 hours sleep deprivation on different types of work. Ergonomics 7:63-72.

Williams, R. 1976. Keywords: A Vocabulary of Culture and Society. Glasgow: Fontana.

Wilpert, B. 1989. Mitbestimmung. In Arbeits- und Organisationspsychologie. Internationales Handbuch in Schlüsselbegriffen, edited by S Greif, H Holling, and N Nicholson. Munich: Psychologie Verlags Union.

Wilson, JR. 1991. Participation: A framework and foundation for ergonomics. J Occup Psychol 64:67-80.

Wilson, JR and EN Corlett. 1990. Evaluation of Human Work: A Practical Ergonomics Methodology. London: Taylor & Francis.

Wisner, A. 1983. Ergonomics or anthropology: A limited or wide approach to working condition in technology transfer. In Proceedings of the First International Conference On Ergonomics of Developing Countries, edited by Shahnavaz and Babri. Luleå, Sweden: Luleå Univ. of Technology.

Womack, J, T Jones, and D Roos. 1990. The Machine That Changed the World. New York: Macmillan.

Woodson, WE, B Tillman, and P Tillman. 1991. Human Factors Design Handbook. New York: McGraw-Hill.

Zhang, YK and JS Tyler. 1990. The establishment of a modern telephone cable production facility in a developing country. A case study. In International Wire and Cable Symposium Proceedings. Illinois. 

Zinchenko, V and V Munipov. 1989. Fundamentals of Ergonomics. Moscow: Progress.


Amphoux, L. 1976. Fatigue. Instantanés médicaux, pathologie du travail, intoxications, maladies par agents physiques. In Encyclopédie Médico-Chirurgicale. Paris: Les éditions techniques.

Birren, JE and K Warner Schaie. 1990. Handbook of the Psychology of Aging. New York: Academic Press.

Bourlière, F. 1982. Gérontologie, Biologie Et Clinique. Paris: Flammarion.

Bugard, P, EJ Caille, L Crocq, B Ely, M Henry, L Petrescu, and A Reinberg. 1974. CIS 76-281 Stress, Fatigue, and Depression in Everyday Life. Vol. 1 and 2. Paris: Editions Doin.

Carter, FA and EN Corlett. 1982. Accidents and Shiftwork. Dublin: European Foundation for the Improvement of Living and Working Conditions.

Charness, M. 1985. Aging and Human Performance. New York: Wiley.

Colligan, MJ and RR Rosa. 1990. Shiftwork effects on social and family life. In Shiftwork, edited by AJ Scott. Philadelphia: Hanley & Belfus.

Davies, BT and H Shahnawaz. 1977. CIS 77-1774 An anthropometer for use in developing countries. Ergonomics 20(3):317-320.

Drury, CG, B Paramore, HP Van Cott, SM Grey, and EN Corlett. 1987. Task analysis. In Handbook of Human Factors, edited by G Salvendy. New York: Wiley.

Fraser, TM. 1989. The Worker At Work. London: Taylor & Francis.

Freivalds, A. 1987. The ergonomics of tools. Int Rev Ergon 1:43-75.

Gadbois, C. 1991. Round the clock operations in hospitals: Shift scheduling, task demands and work organisation. Abstracts of the International Symposium Shiftwork and Job Demands, 11-12 July, Paris.

Graf, O. 1922. Über lohnendste Arbeitspausen bei geistiger Arbeit. Psychol Arbeiten 7:548-611.

Grieco, A and M Masali. 1971. Setting up a method for the measurement of anthropometric parameters with a view to the ergonomic design of workplaces. Med Lavoro 62(11):505-531.

Hamelin, P. 1981. Les conditions temporelles de travail des conducteurs routiers et la sécurité routière. Travail Hum 44:5-21.

International Labour Organization (ILO). 1984. Protection of Workers against Noise and Vibration in the Working Environment, an ILO Code of Practice. Geneva: ILO.

ISSA. N.d. W.G. 3 E.: Checklist for a Classification of Machines On the Basis of Ergonomic Principles, International Section ‘Machine Safety’ On the Prevention of Occupational Accidents and Diseases. Mannheim: ISSA.

Konz, S. 1979. Handtools. In Work Design Columbus, Ohio: Grid.

McEwan, YW. 1978. Flexible working arrangements in continuous shift production. Pers Rev :12-19.

Minors, DS and JM Waterhouse. 1983. Circadian rhythm amplitude-is it related to rhythm adjustment and/or worker motivation? Ergonomics 26:229-241.

Mital, A and A Kilborn. 1992. Design, selection and use of hand tools to alleviate trauma of the upper extremeties: Part I- Guidelines for the practitioner. Part II- The scientific basis for the guide. Int J Ind Erg 10:1-21.

Nowak, E. 1978. CIS 78-2068 Determination of the spatial reach area of the arms for workplace design purposes. Ergonomics 21(7) (July):493-507.

Robinson, PK et al. N.d. Aging and Technological Advances. Presented At NATO Conference Series III, Human Factors, Volume 24.

Rohmert, W. 1975. Anthropometric elements of ergonomics. Bulletin de l’AISS:25-35.

—. 1983. Formen menschlicher Arbeit. In Praktische Arbeitsphysiologie, edited by W Rohmert and J Rutenfranz. Stuttgart: Georg Thieme Verlag.

Tichauer, ER. 1978. The Biomechanical Basis of Ergonomics. New York: Wiley Interscience.

Vidacek, S, L Kaliterna, and B Radosevic-Vidacek. 1987. Predictive validity of individualdifference measures for health problems in shiftworkers: Preliminary results. In Contemporary Advances in Shiftwork Research, edited by A Oginski, J Pokorski, and J Rutenfranz. Krakow: Medical Academy.

Vieillissement et travail. 1989. Travail Hum 52:1-3.

Webb Associates. 1972. CIS 74-802 Anthropometry for Respirator Sizing. Cincinnati, Ohio: NIOSH.